Answer:
Step-by-step explanation:
Given the volume of the cylindrical soup expressed as V = πr³+ 7πr²
From V = πr³ + 7πr²;
factor out the common variable
V = πr³ + 7πr²
V = πr²(r+7) ... 1
The original volume of a cylinder V = πr²h .... 2 where;
r is the radius of the cylinder
h is the height of the cylinder
Equating equation 1 and 2, we will have;
πr²(r+7) = πr²h
Divide both sides by πr²
πr²(r+7)/ πr² = πr²h/ πr²
r+7 = h
h = r+7
<em>Hence the factor in the context given is equivalent to the height of the cylinder written as a function of its radius r</em>.<em> The statement means that the height of the cylindrical soup is 7 more than its radius.</em>
<em></em>
Consider the following sets of sample data: A: $29,400, $30,900, $21,000, $33,200, $21,300, $24,600, $29,500, $22,500, $35,200,
Lana71 [14]
Answer:
CV for A = 21.8%
CV for B = 15.5%
Step-by-step explanation:
The formula for coefficient of variation is:
CV = Standard Deviation / Mean
So,
For A:
Mean = Sum/No. of items
= 391300/14
=$27950
and
SD = $6085.31
CV for A = 6085.31/27950 * 100
=21.77%
Rounding off to one decimal
CV for A = 21.8%
For B:
Mean = Sum/No. of items
= 43.58/11
=3.96
and
SD = 0.615
CV for B = 0.615/3.96 * 100
=15.53%
=15.5% ..