<h2>Transportation across the membrane</h2>
Explanation:
(a) Simple diffusion; Faciliated diffusion-Directions in which two transported solutes move
- In simple diffusion diffusion of non polar compounds across the membrane and along the concentration gradient without the involvement of protein whereas in case of facilitated diffusion membrane transport proteins that facilitate movement pf molecules across the membrane down its concentration gradient
- Both the diffusions does not require energy
(b) Facilitated diffusion; active transport-Direction the solute moves relative to its concentration gradient
- In facilitated diffusion membrane transport proteins that facilitate movement of molecules across the membrane down its concentration gradient without the expenditure of energy
- Active transport drives transportation of solute against the concentration gradient across the membrane
(c) Simple diffusion; Active transport-Directions in which two transported solutes move and Direction the solute moves relative to its concentration gradient
- In simple diffusion diffusion of non polar compouds across the membrane and along the concentration gradient without the involvement of protein and energy
- Active transport drives transportation of solute against the concentration gradient across the membrane;secondary active transporters coupled with transportation of two solute molecules
(d) Direct active transport; Indirect active transport-Direction the solute moves relative to its concentration gradient or its electrochemical potential
- Direct active transport use direct energy such as ATP hydrolysis,oxidation and sunlight energy
- Indirect active transport use indirect energy such as chemical gradient,electrochemical gradient established by direct active transporters;one solute moves along the concentration gradient while other moves against the concentration gradient
(e) Symport; Antiport-Direction in which two transported solutes move
- In symport both the solute molecules move in same direction;coupled with primary active transport(direct transport)
- In antiport both the solutes moves in opposite direction;coupled with secondary active transport(indirect transport)
(f) Uniport; coupled transport-Directions in which two transported solutes move
- Uniport is the transport of single solute across the membrane
- Coupled transport is the transport of two solute molecules across the membrane;it may be symport or antiport
(g) P-type ATPase; V-type ATPase-Kinetics of solute transport
- P-type ATPase always transport cations and undergoes phosphorylation
- V-type ATPase(here V stands for vacuole) transport protons and no phosphorylation occurs;catalytic activity is not reversible
- Both are types of primary active transporters
Answer:
The correct answer will be option-C.
Explanation:
The evolution of human species in which one species transformed into another species evolves by a mechanism known as anagenesis.
Anagenesis is the mechanism of evolution which transform one species into a different species within a lineage. This process is slow and takes time to form species, therefore, is also known as gradualism or phyletic transformation.
The<em> Homo sapiens</em> evolved from<em> Homo erectus </em>where<em> Homo sapiens </em>overwrites the ancestral species and caused the species to become extinct.
Thus, Option-C is the correct answer.
Answer:
Magnetism
Explanation:
The refrigerator doors are made of <u>metal</u>, and we use <u>magnets</u> to hold papers and photos on their surfaces. Magnets attract metals such as iron, cobalt, nickel, etc. That is due to the physical property of matter called <u>magnetism</u>, which is related to the attraction force generated by a magnetic field.
Answer:
a. foxes
b. camels
c. desert hares
d. birds
e. reptiles
g. cacti
i. small trees
Explanation:
Hope this helps! May I get brainliest? -w-