An atom that gains electrons and becomes negatively charged is known as an <u>anion</u><u>.</u>
Hope it helps!
Answer: Option (a) is the correct answer.
Explanation:
Subscript present in chemical formula of a compound represents the number of atoms of the element actually present in it.
For example, in
the subscripts present in it are 7, 7, 1, and 2.
A subscript is not responsible for determining the relative mass of each type of an atom because a subscript simply represents the number of atoms of each type of an element participating or combining with other atoms of a compound.
Thus, we can conclude that the statement subscripts represent the relative mass of each type of atom in the compound, is false.
Iodine is a group 7A element. The halogens form anions because of their high electronegativities, so Iodine is unlikely to form a cation.
Ionization enthalpy, IE, is also called ionization potential is the ability to remove the electron from the neutral gaseous atom. There is a trend observed in the periodic table for the IE value. As we go from left to right in a period, IE vale increases. While moving from top to bottom in a group, IE value decreases.
- The phenomenon of unexpected drop in IE1 values between Groups 2 and 13, in period 2 and period 4 is due to the introduction of d-orbitals in the case of period 4 elements.
- While moving in the period, there is the constant addition of electrons in the nucleus. The shell sie remains constant while electron pull increases from the nucleus, this leads to a reduction in the size of the atom. As the size decreases, it is difficult to remove the electron from the atom, and thus IE value increases in the case of period 2.
- When we study the case of period 4, there is an introduction of d-electrons. As the inner shell electron increases, there is an increase in the shielding effect. This shielding effect tends to decrease the nuclear attraction between the nucleus and outermost electrons. Ultimately this decreases the IE value in the fourth period. Such a phenomenon is absent in the case of group 2 elements.
- If we speak in terms of orbital energy, the IE value decreases while moving from top to bottom in the period. This is due to the fact that, as we go down in the periodic table, the number of shells increases, and the outermost electron is too far from the nuclear attraction, therefore it can be ejected out easily. This marks a decrease in IE value.
To learn more about ionization refer the link:
brainly.com/question/1558319
#SPJ4
Answer:
Molar mass = 32.64 g / mol.
The density of gas is 1.3 × 10⁻³g/mL.
Explanation:
Given data:
Mass of sample = 2.35 g
Pressure = 1.05 atm
Volume = 1.85 L (1.85 × 1000 = 1850 ml)
Temperature = 55 °C (55+ 273.15 = 328.15 K)
Density = ?
Formula:
d = m/ v
The volume of flask would be the volume of gas.
d = 2.35 g / 1850 mL = 0.0013 g/mL or 1.3 × 10⁻³g/mL
The density of gas is 1.3 × 10⁻³g/mL.
Molar mass:
Now we will calculate the moles of a gas first in order to find the molar mass of a gas.
Formula:
PV =nRT
n = number of moles.
n = PV / RT
n = 1.05 atm × 1.85 L / 0.0821 atm. dm³. K⁻¹ . mol⁻¹ × 328.15 K
n = 1.9425 atm . L / 26.941115 atm . dm.³mol⁻¹
n = 0.072 mol
Now we will find the molar mass.
Number of moles = mass / molar mass
0.072 mol = 2.35 g / molar mass
Molar mass = 2.35 g / 0.072 mol
Molar mass = 32.64 g / mol