Answer:
V = 10.3 L
Explanation:
Given data:
Mass of methane = 6.40 g
Volume of CO₂ produced = ?
Temperature = 35°C (35+273 = 308 K)
Pressure = 100.0 KPa (100.0/101 = 0.98 atm)
Solution:
Chemical equation:
CH₄ + 2O₂ → CO₂ + 2H₂O
Number of moles of CH₄:
Number of moles = mass/molar mass
Number of moles = 6.40 g/ 16 g/mol
Number of moles = 0.4 mol
Now we will compare the moles of CO₂ with CH₄.
CH₄ : CO₂
1 : 1
0.4 : 0.4
Volume of CO₂:
Formula:
PV = nRT
0.98 atm ×V = 0.4 mol ×0.0821 atm.L/mol.K × 308 K
0.98 atm ×V = 10.11 atm.L
V = 10.11 atm.L /0.98 atm
V = 10.3 L
Answer:
Li
Explanation:
The phenomenon of wave particle duality was well established by Louis deBroglie. The wavelength associated with matter waves was related to its mass and velocity as shown below;
λ= h/mv
Where;
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
This implies that if the velocities of all particles are the same, the wavelength of matter waves will now depend on the mass of the particle. Hence; the wavelength of a matter wave associated with a particle is inversely proportional to the magnitude of the particle's linear momentum. The longest wavelength will then be obtained from the smallest mass of matter. Hence lithium which has the smallest mass will exhibit the longest DeBroglie wavelength
I believe the answer is carbon atoms
X=0.031903 I think if you don’t know how to do this photo math would be a good thing for you