Answer:
0.875
Step-by-step explanation:
<u>Definition</u>
The conditional Probability of an event A given that event B has occurred is:

Let A=Event of Withdrawing Cash.
B=Event of Checking Account Balance.
We want to determine the probability that given a woman checks her account balance, she also gets cash. i.e. P(A|B)

Therefore:

Can you add multiple choice as I am skeptical of my awnser
Answer:
26.11% of the test scores during the past year exceeded 83.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
It is known that for all tests administered last year, the distribution of scores was approximately normal with mean 78 and standard deviation 7.8. This means that
.
Approximately what percentatge of the test scores during the past year exceeded 83?
This is 1 subtracted by the pvalue of Z when
. So:



has a pvalue of 0.7389.
This means that 1-0.7389 = 0.2611 = 26.11% of the test scores during the past year exceeded 83.
Step-by-step explanation:
so pretty much y= is the line that goes up and it has its own numbers right. the x= is the line that goes at the bottom right right