1. The question is incomplete
2. Answer=D
3. Answer=B
LCM of 24 and 60=120
120seconds=2minutes
4. Answer=D
4.5 miles x miles
_________= _________
15 mins 75 minutes
cross multiply
15x=337.5
divide both sides by 15
x=22.5
5. Honestly, the number of weekdays per month varies...
At the start, the tank contains
(0.02 g/L) * (1000 L) = 20 g
of chlorine. Let <em>c</em> (<em>t</em> ) denote the amount of chlorine (in grams) in the tank at time <em>t </em>.
Pure water is pumped into the tank, so no chlorine is flowing into it, but is flowing out at a rate of
(<em>c</em> (<em>t</em> )/(1000 + (10 - 25)<em>t</em> ) g/L) * (25 L/s) = 5<em>c</em> (<em>t</em> ) /(200 - 3<em>t</em> ) g/s
In case it's unclear why this is the case:
The amount of liquid in the tank at the start is 1000 L. If water is pumped in at a rate of 10 L/s, then after <em>t</em> s there will be (1000 + 10<em>t</em> ) L of liquid in the tank. But we're also removing 25 L from the tank per second, so there is a net "gain" of 10 - 25 = -15 L of liquid each second. So the volume of liquid in the tank at time <em>t</em> is (1000 - 15<em>t </em>) L. Then the concentration of chlorine per unit volume is <em>c</em> (<em>t</em> ) divided by this volume.
So the amount of chlorine in the tank changes according to

which is a linear equation. Move the non-derivative term to the left, then multiply both sides by the integrating factor 1/(200 - 5<em>t</em> )^(5/3), then integrate both sides to solve for <em>c</em> (<em>t</em> ):


![\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac{c(t)}{(200-3t)^{5/3}}\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5B%5Cdfrac%7Bc%28t%29%7D%7B%28200-3t%29%5E%7B5%2F3%7D%7D%5Cright%5D%3D0)


There are 20 g of chlorine at the start, so <em>c</em> (0) = 20. Use this to solve for <em>C</em> :

![\implies\boxed{c(t)=\dfrac1{200}\sqrt[3]{\dfrac{(200-3t)^5}5}}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bc%28t%29%3D%5Cdfrac1%7B200%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7B%28200-3t%29%5E5%7D5%7D%7D)
Answer: T = 4
Step-by-step explanation:
1. Write all the variables down
P = 8 V = 2X N = 2 R = 2X X = 3
2. Since you know that X = 3 substitute it in to find V and R
V = 2X = 2(3) = 6
R = 2X = 2(3) = 6
3. Find PV
PV = P x V
= 8 x 6
= 48
4. Find NRT
NRT = N x R x T
= 2 x 6 x T
= 12 x T
= 12T
5. Find T
PV = NRT
48 = 12T
12T = 48
divide both sides by 12
T = 48 ÷ 12
T = 4
16 ounces in a pound.
24 oz= 1.5 ibs.
Added to 10 ibs.
Now has 11.5 ibs.
R(x)= 11.5 - x
For this case we have the following inequality:
2 ≥ 4 - v
The first thing we must do in this case is to clear the value of v.
We have then:
v ≥ 4 - 2
v ≥ 2
Therefore, the solution set is given by:
[2, inf)
Answer:
See attached image.