1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
10

How to solve 9 * 4 - 8 / 2 *4

Mathematics
2 answers:
egoroff_w [7]3 years ago
8 0

Answer: the answer is 20

Step-by-step explanation:

Use order of operations and divide 8 by 2 and you get 4. Then use the PEMDAS (parentheses,exponents,multiplacation,division,addition, subtraction) method. Go left to right. And solve. :) I hope this helps

r-ruslan [8.4K]3 years ago
3 0
You follow the rules of order of operations multiplication and division the add or subtract in this case start from the left do 9 times 4 which is 36 then 8 divided by 2 times 4 once you get that then subtract those numbers hope that helps
You might be interested in
480kg of concrete mix. sand and gravel in the ratio 1:3:4
Anestetic [448]

Answer:

Step-by-step explanation:

1+3+4 = 8

480 / 8 = 60

60 x 1 = 60 (concrete)

60 x 3 = 180 (sand)

60 x 4 = 240 (gravel)

60:180:240

4 0
3 years ago
F(x) = 4x2 – 3x + 5x3 – 7 .<br> Decide if the function is a polynomial
Marina CMI [18]
Umm so it’s not coming out as a polynomial but these answers came out
type of problem. Try the examples below.

4 0
3 years ago
What is 69 + 69 pls anser
Thepotemich [5.8K]
The answer is ————— 138
5 0
3 years ago
Read 2 more answers
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
1 year ago
How many times does 15 go into 46
Irina18 [472]
15 goes into 46 3 times 
8 0
3 years ago
Read 2 more answers
Other questions:
  • Tell whether each number is rational or irrational: Pi, -1/2, the square root of 2/3, and 0.57575757
    5·1 answer
  • Given that f(x) = 2x + 1 and g(x) = the quantity of 3x minus 1, divided by 2, solve for g(f(3)). 5 7 9 10
    15·1 answer
  • What are the side lengths of a rectangle if the area = 40 in and the perimeter = 48 in
    10·2 answers
  • Last year, there were 380 students at woodland middle school. This year the student population will increase by 5percent. What w
    5·1 answer
  • Why and when do we cross multiply in algebra?
    7·2 answers
  • 25. Willa purchases a vase for her kitchen
    13·1 answer
  • What is the value of a when we rewrite 8^x as a^-x/9​
    6·1 answer
  • S. Jamie was really struggling to multiply two digit numbers together. Mrs. Brack helped her with the
    12·1 answer
  • What is 6-2(x+6)=3x+4
    15·1 answer
  • Find the distance between each pair of points. Round your answer to the nearest tenth, if necessary. Hint: Use the Pythagorean T
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!