Answer:
a) d²y/dx² = ½ x + y − ½
b) Relative minimum
Step-by-step explanation:
a) Take the derivative with respect to x.
dy/dx = ½ x + y − 1
d²y/dx² = ½ + dy/dx
d²y/dx² = ½ + (½ x + y − 1)
d²y/dx² = ½ x + y − ½
b) At (0, 1), the first and second derivatives are:
dy/dx = ½ (0) + (1) − 1
dy/dx = 0
d²y/dx² = ½ (0) + (1) − ½
d²y/dx² = ½
The first derivative is 0, and the second derivative is positive (concave up). Therefore, the point is a relative minimum.
Supplementary angles need to add up to 180 degrees.
Subtract Y from 180:
X = 180 - 156 = 24
X = 24 degrees