Answer:
Species separated by a physical barrier for a long time, suffer allopatric speciation, so they can not interbreed anymore.
Explanation:
Allopatric speciation consists of the geographic separation of a continuous genetic background giving place to two or more new geographically isolated populations. These separations might be due to migration, extinction of geographically intermediate populations, or geological events. In this speciation, some barriers impede genetic interchange, or genetic flow, as the two new populations that are separated can not get together and mate anymore. These barriers might be geographical or ecological.
Vicariance is the geographical separation of an original population into two or more new groups. Discontinuities in the physical environment like rivers, mountains, water, etc., are physical barriers that impede genetic flow between the separated groups.
The process of allopatric speciation involves different steps:
- The emergence of the barrier.
- Interruption in the genetic interchange
- The occurrence of new mutations and their accumulation in time in each population. Slow and gradual differentiation.
- Genetic divergence by natural selection and reproductive isolation makes it impossible for the two groups to mate even if the barrier disappears.
- Prezigotic isolation mechanisms favored by selection once occurs a secondary contact between the new species in formation.
Answer:
they are the place where cell respiration takes place
Explanation:
Cellular respiration is a series of metabolic reactions used by the cell to create energy (ATP), these reactions occur partially in the cytoplasm, but mostly in the mitochondria. On the other hand, vacuoles store water in plants and help give them structure, are the largest organelle in plant cells, and both plants and animals have them. Therefore the answer is, they are the place where cell respiration takes place.
Answer:
It processes undigested food into feces.
Explanation:
Answer:
2.glucose move into chamber B faster than fructose
Explanation:
- Facilitated diffusion: refers to the transport of hydrophilic molecules that are not able to freely cross the membrane. Channel protein and many carrier proteins are in charge of this <u>passive transport</u>. If uncharged molecules need to be carried <u>this process depends on concentration gradients</u> and molecules are transported from a higher concentration side to a lower concentration side. If ions need to be transported this process depends on an electrochemical gradient. The glucose is an example of a hydrophilic protein that gets into the cell by facilitated diffusion. Facilitated diffusion is a passive transport process because the cell does not need any energy to make it happen.
The exposed scenario is an example of facilitated diffusion, a process that occurs in favor of the concentration gradient, and which rate depends on the concentration of molecules in each side of the membrane, in this case, glucose and fructose, among other factors that might also influence the diffusion rate. So, as the concentration of glucose is higher in chamber A (80%), and lower in chamber B (20%), in comparison with fructose, the first one will diffuse faster than fructose. The difference in concentration between both chambers is sharper in glucose, so its transport is faster than the fructose transport, which will also diffuse but at a lower rate.
False. <span>Breaking Bonds → Energy Absorbed
</span>
You have to put energy into a molecule to break its chemical bonds. The amount needed is called the<span> bond energy</span><span>. If you think about it, molecules don't spontaneously break.
</span>