Answer:
13. 
14. 
Step-by-step explanation:
13.
Given


Required
Determine the distance between M and S
Distance (D) is calculated using:

Where








<em>Hence, the distance between M and S is 18 units</em>
<em></em>
14.
The coordinate of S and P are not given,
So, I'll just use (x,y) for P
i.e.

Required
Determine the coordinates of S
If S is 6 units above P, then the coordinates of S is

<em>i.e. we add the units to the y coordinate of P.</em>
Answer:
x = 33
Step-by-step explanation:
(x + 13) + (4x + 2) = 180
x + 13 + 4x + 2 = 180
5x + 15 = 180
5x = 180 - 15
5x = 165
x = 165/5
x = 33
Check:
(x + 13) + (4x + 2) = 180
(33 + 13) + 4(33) + 2 = 180
46 + 132 + 2 = 180
46 + 134 = 180
Check the picture below. So the parabola looks more or less like so.
let's recall that the vertex is half-way between the focus point and the directrix, at "p" units away from both.
Let's notice that the focus point is below the directrix, that means the parabola is vertical, namely the squared variable is the "x", and it also means that it's opening downwards as you see in the picture, namely that "p" is negative, in this case "p" is 1 unit, and thus is -1.
![\bf \textit{parabola vertex form with focus point distance} \\\\ \begin{array}{llll} 4p(x- h)=(y- k)^2 \\\\ \stackrel{\textit{we'll use this one}}{4p(y- k)=(x- h)^2} \end{array} \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-2\\ k=5\\ p=-1 \end{cases}\implies 4(-1)(y-5)=[x-(-2)]^2\implies -4(y-5)=(x+2)^2 \\\\\\ y-5=-\cfrac{1}{4}(x+2)^2\implies y=-\cfrac{1}{4}(x+2)^2+5](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7B4p%28y-%20k%29%3D%28x-%20h%29%5E2%7D%20%5Cend%7Barray%7D%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20vertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-2%5C%5C%20k%3D5%5C%5C%20p%3D-1%20%5Cend%7Bcases%7D%5Cimplies%204%28-1%29%28y-5%29%3D%5Bx-%28-2%29%5D%5E2%5Cimplies%20-4%28y-5%29%3D%28x%2B2%29%5E2%20%5C%5C%5C%5C%5C%5C%20y-5%3D-%5Ccfrac%7B1%7D%7B4%7D%28x%2B2%29%5E2%5Cimplies%20y%3D-%5Ccfrac%7B1%7D%7B4%7D%28x%2B2%29%5E2%2B5)
Answer:
C and B
Step-by-step explanation:
The correct option is option B and C. The necessary condition to prove that the opposite angles of a parallelogram are congruent:
C. Angle Addition Postulate.
B. Opposite sides are congruent
Answer:
35x
Step-by-step explanation:
Start with parentheses, 2 x 1/2 = 1
9 x 4 = 36
36 - 1 = 35