Im not 100% sure but I do think it is Ratio (red to blue) of the areas
Step-by-step explanation:
I think the answer is B or C
Circle formula
(x-h)^2+(y-k)^2=r^2 where (h,k) is the center
and r=radius
to find the radius
we are given one of the points and the center
distnace from them is the radius
distance formula
D=

points (-3,2) and (1,5)
D=

D=

D=

D=

D=5
center is -3,2
r=5
input
(x-(-3))^2+(y-2)^2=5^2
(x+3)^2+(y-2)^2=25 is equation
radius =5
input -7 for x and solve for y
(-7+3)^2+(y-2)^2=25
(-4)^2+(y-2)^2=25
16+(y-2)^2=25
minus 16
(y-2)^2=9
sqqrt
y-2=+/-3
add 2
y=2+/-3
y=5 or -1
the point (-7,5) and (7,-1) lie on this circle
radius=5 units
the points (-7,5) and (-7,1) lie on this circle
Answer:
the cost of running the boarding
house for 600 students is N61,000
Step-by-step explanation:
Let C represents cost
K1 represents first constant
K2 represents second constant
C= k1+k2n
3500 = k1 + 25 k2............. Eqn(1)
6000= k1 + 50 k2 .............. Eqn(2)
Subtract eqn(1) from eqn(2)
2500= 25k2
K2= 2500/25
K2= 100
To get k1 from eqn(1)
3500 = k1 + 25 k2
Substitute the value of k2
3500 = k1 + 25 (100)
3500= k1 +2500
K1= 3500- 2500
K1= 1000
The equation connecting them;
C= 1000+ 100n
The cost of running the boarding
house for 600 students is
n= 600
C= 1000+ 100(600)
C= 1000+60000
C= N 61,0000
Answer:
a) E(X) = 71
b) V(X) = 20.59
Sigma = 4.538
Step-by-step explanation:
<em>The question is incomplete:</em>
<em>According to a 2010 study conducted by the Toronto-based social media analytics firm Sysomos, 71% of all tweets get no reaction. That is, these are tweets that are not replied to or retweeted (Sysomos website, January 5, 2015).
</em>
<em>
Suppose we randomly select 100 tweets.
</em>
<em>a) What is the expected number of these tweets with no reaction?
</em>
<em>b) What are the variance and standard deviation for the number of these tweets with no reaction?</em>
This can be modeled with the binomial distribution, with sample size n=100 and p=0.71, as the probability of no reaction for each individual tweet.
The expected number of these tweets with no reaction can be calcualted as the mean of the binomial random variable with these parameters:

The variance for the number of these tweets with no reaction can be calculated as the variance of the binomial distribution:

Then, the standard deviation becomes:
