Answer:
My pretest behaviors were triggered by the sympathetic nervous system, while my body returned to its normal state by the way of the parasympathetic nervous system, after the test.
Explanation:
The sympathetic nervous system and the parasympathetic nervous system are part of the autonomic nervous system. The main function of the autonomic nervous system is to regulate the heart, kidneys, and liver which are not under voluntary control. The regulation of the body’s unconscious actions is executed through the sympathetic and the parasympathetic nervous system.
Upon exposure to stressors or threats, the sympathetic nervous system is triggered. Epinephrine and norepinephrine are then released, causing acceleration of the heart, constriction of blood vessels, increase in blood pressure, profuse sweating and other related responses against stress. The sympathetic nervous system controls all these involuntary responses that could be termed “fight-flight-or-freeze” response.
On the other hand, the parasympathetic nervous system initiates what is termed “rest and digest” response, which occurs immediately after the “fight-flight-or-freeze” phase response to stress is over. The body is returned to its normal state by the parasympathetic nervous system. The parasympathetic nervous system releases acetylcholine, which regulates the function of the body during a period of rest or recuperation.
A) secretion of acids and ammonia
Answer:
Active transport.
Explanation:
The kidney uses active transport to move these substances from the nephron to the renal vein because these substances did not moves from the nephron bowl to the renal vein through simple diffusion so for this purpose active transport is used in which energy is spent in order to move the substances from one region to another so we can say that kidney must use active transport to move reabsorbed substances from the nephron to the renal vein.
Thomas could maybe look back through his day and see where he put them
The correct answer is: Induction, because this could be easily changed by changing the cell's environment.
Cell differentiation (process by which cell becomes specialized) can be under the influence of many factors:
• Cytoplasmic influence because cytoplasm can influence and control the behaviour of nuclear genes.
• Embryonic induction-changing the cell environment
For example: if cells from one region of the embryo are transplanted to some other region that transplant will most likely differentiate according to the chemical regulators of the surrounding cells.
• Proteins present in a cell influences its differentiation
• Cell-Cell interactions via cell-cell adhesion and signalling molecules.