Answer:-ΔG=-101.5KJ
Explanation:We have to calculate ΔG for the reaction so using the formula given in the equation we can calculate the \Delta G for the reaction.
We need to convert the unit ofΔS in terms of KJ/Kelvin as its value is given in terms of J/Kelvin
Also we need to convert the temperature in Kelvin as it is given in degree celsius.

After calculating forΔG we found that the value ofΔG is negative and its value is -101.74KJ
For a reaction to be spontaneous the value of \Delta G \ must be negative .
As the ΔG for the given reaction is is negative so the reaction will be spontaneous in nature.
In this reaction since the entropy of reaction is positive and hence when we increase the temperature term then the overall term TΔS would become more positive and hence the value of ΔG would be less negative .
Hence the value of ΔG would become more positive with the increase in temperature.
So we found the value of ΔG to be -101.74KJ
Explanation:
Below is an attachment containing the solution.
The sample has a new pressure of 274kPa. If at 105 kPa and 275K, a 220 mL sample of helium gas is contained in a cylinder with a moving piston. The sample is pushed till it has a 95.0 mL volume and 310K .
The macroscopic characteristics of ideal gases are related by the ideal gas law (PV = nRT). A gas is considered to be perfect if its particles (a) do not interact with one another and (b) occupy no space (have no volume). Where P= pressure V= volume and T = temperature.
From ideal gas equation
P₁V₁/T₁ =P₂V₂/T₂
105×220÷275 = P₂ ×95÷310
P₂= (105×220×310)÷(275×95)
P2= 7161000/26125
P2 = 274.105 kPa
Hence, the new pressure of helium gas is 274kPa
To know more about Ideas gas equation
brainly.com/question/28837405
#SPJ1
1) it explains about stability of an atom by including stationary state.
2) it explains tge quantization of energy.
3) it gives the concept of angular momentum of a revolving electron.
Answer: <em>When you take the top off of a bottle of soda, the pressure inside the bottle decreases and goes to the same pressure as the atmosphere. When that happens the carbon dioxide inside is no longer forced to be a liquid and turns back into a gas, causing the bubbles that we're so familiar with.</em>
Explanation:
However, producing foaming carbon dioxide gas by shaking a bottle of soda water is a physical change, while producing foaming carbon dioxide gas by combining baking soda and vinegar is a chemical change. ... Because no chemical bonds are broken and no new molecules are formed, this is a physical change in the system.