Answer:
THE VOLUME OF THE BALLOON IS 1.45 L
Explanation:
At sea level:
Volume = 2 L
Pressure = 1 atm
Temperature = 12 °C
At 30000 ft altitude:
Pressure = 0.30 atm
Temperature = -55°C
Volume = unknown
Using the general gas formula:
P1 V1 / T1 = P2 V2 / T2
Re-arranging the formula by making V2 the subject of the equation, we have;
V2 = P1 V1 T2 / T1 P2
V2 = 1 * 2 * 12 / 0.30 * 55
V2 = 24 / 16.5
V2 = 1.45 L
The volume of the balloon at the temperature of -55 C and 0.30 atm is 1.45 L
Answer:
Less than one gram
Explanation:
Since there is no whole number before the decimal it means that the number is less than whole meaning it is less than one gram
The volume of the gas at STP = 35.01 L
<h3>Further explanation</h3>
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure).
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
V=17.4 L
T = 23 + 273 = 296 K
P = 2.18 atm

The volume of the gas occupy at STP :

Answer:
1.23 g/mL
-18.2%
Explanation:
We need to find the average, which is just the sum of the numbers divided by the number of numbers. Here, the sum will be 1.24 + 1.21 + 1.23 = 3.68 g/mL. There are 3 numbers, so divide 3.68 by 3: 3.68 / 3 ≈ 1.2266...
However, we need to round this and take into account significant figures. Each trial gave a number with 3 significant figures, so we round our number off to three: 1.22666... ≈ 1.23. So, circle the first number under the X column.
We now need to find the percent error, which is RE (%). To calculate this, we take the measured value (1.23 in this case) and subtract the exact value (1.50 here) from it, and then divide that by the exact value:
(1.23 - 1.50) / 1.50 ≈ -0.1822...
Again, we need to round to 3 significant figures, which would make it:
-0.1822... ≈ -0.182
Thus, circle the last number under the RE (%) column.