Answer : The percentage composition of carbon, hydrogen and sulfur in a compound is, 38.8 %, 9.6 % and 51.6 % respectively.
Explanation :
To calculate the percentage composition of element in sample, we use the equation:

Given:
Mass of carbon = 1.94 g
Mass of hydrogen = 0.48 g
Mass of sulfur = 2.58 g
First we have to calculate the mass of sample.
Mass of sample = Mass of carbon + Mass of hydrogen + Mass of sulfur
Mass of sample = 1.94 + 0.48 + 2.58 = 5.0 g
Now we have to calculate the percentage composition of a compound.



Hence, the percentage composition of carbon, hydrogen and sulfur in a compound is, 38.8 %, 9.6 % and 51.6 % respectively.
Answer: The approximate equilibrium partial pressure of
is 3.92 atm
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.
The given balanced equilibrium reaction is,

![K_p=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
![1.5\times 10^{-5}=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=1.5%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
On reversing the reaction:

initial pressure 4.00atm 2.00 atm 0
eqm (4.00-2x)atm (2.00-x) atm 2x atm
![K_p=\frac{[H_2S]^2}{[H_2]^2\times [S_2]}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D)


![0.67\times 10^5=\frac{2x]^2}{[4.00-2x]^2\times [2.00-x]}](https://tex.z-dn.net/?f=0.67%5Ctimes%2010%5E5%3D%5Cfrac%7B2x%5D%5E2%7D%7B%5B4.00-2x%5D%5E2%5Ctimes%20%5B2.00-x%5D%7D)

![[H_2S]=2x=2\times 1.96=3.92 atm](https://tex.z-dn.net/?f=%5BH_2S%5D%3D2x%3D2%5Ctimes%201.96%3D3.92%20atm)
Thus approximate equilibrium partial pressure of
is 3.92 atm
The complete question is: Match the following; Disulfide BondsA. Covalent interactions not found in all proteins.Peptide BondsB. Covalent interactions found in all proteins.Long-range interactionsC. Non-covalent interaction formed primarily on the interior of water-soluble proteins.Hydrophobic coreD. Covalent or non-covalent interactions formed b/w amino acid far from each other in primary structure.
The answer
Disulfide Bonds (Covalent interactions not found in all proteins.)
Peptide Bonds (Covalent interactions found in all proteins.)
Long-range interactions (Covalent or non-covalent interactions formed b/w amino acid far from each other in primary structure.)
Hydrophobic core. (Non-covalent interaction formed primarily on the interior of water-soluble proteins.)
Explanation:
The phrases have been given the right meaning enclosed in a parentheses. The should be matched accordingly as presented.
Answer:288229262427020202625369201010910000000000000
Explanation: bcuz I said