Its a solid because it would melt
Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. we compare approximately 90 kb of coding DNA nucleotide sequence from 97 human genes to their sequenced chimpanzee counterparts and to available sequenced gorilla, orangutan, and Old World monkey counterparts, and, on a more limited basis, to mouse. The nonsynonymous changes (functionally important), like synonymous changes (functionally much less important), show chimpanzees and humans to be most closely related, sharing 99.4% identity at nonsynonymous sites and 98.4% at synonymous sites. On a time scale, the coding DNA divergencies separate the human-chimpanzee clade from the gorilla clade at between 6 and 7 million years ago and place the most recent common ancestor of humans and chimpanzees at between 5 and 6 million years ago. The evolutionary rate of coding DNA in the catarrhine clade (Old World monkey and ape, including human) is much slower than in the lineage to mouse. Among the genes examined, 30 show evidence of positive selection during descent of catarrhines. Nonsynonymous substitutions by themselves, in this subset of positively selected genes, group humans and chimpanzees closest to each other and have chimpanzees diverge about as much from the common human-chimpanzee ancestor as humans do. This functional DNA evidence supports two previously offered taxonomic proposals: family Hominidae should include all extant apes; and genus Homo should include three extant species and two subgenera, Homo (Homo) sapiens (humankind), Homo (Pan) troglodytes (common chimpanzee), and Homo (Pan) paniscus (bonobo chimpanzee).
Answer:
Anatomy of the meniscus: superior view of the tibial plateau ... In contrast, cells in the inner portion of the tissue appear more round and are ... Following comparison of these treatments, results showed that the combination of
Explanation:
1. Divergent Plate Boundaries or Constructive Plate Boundaries. This is where two plates separate. Ridges are created when mantle convection rises up beneath it, with extreme heat, the crust will thin, and the igneous material beneath will eventually.
<span>2. Divergent, or destructive plate margins cause volcanoes. As the more dense plate subducts, it will melt at depth and the water driven off, will lower the melting point of the overlying mantle wedge, this will create a type of magma. Volcanic Island Arcs are formed at oceanic-oceanic destructive plate margins. The hot, bouyant magma, is less dense that the surrounding rock, so will rise to the surface, and will collect beneath the plate that hasn't been subducted. It will then, under increased pressure erupt under the sea. Over thousands to millions of years, it will keep erupting, to form islands. </span>
<span>3. Earthquakes are mainly caused at Transform boundaries and Divergent boundaries. At transform boundaries, two plates sliding past eachother, and the build up of friction could lead to earthquakes, if enough stress is built up and then suddenly released, then the energy is released as seismic waves or an earthquake. At divergent boundaries, earthquakes happen along the Benioff zone which is the slope of the subducting plate that is slowly being dragged into the mantle by mantle convection and slab pull. </span>
<span>4. Divergent boundaries cause orogenisis (mountain building). But only the continental-continental margin where two continental plates are colliding. Because they are the same density, they don't subduct, but they buckle, compress and uplift to form mountains. Just like the himilayas, when the Indian plate collided with the eurasian plate.</span>