Answer:
The atom will have a negative charge.
Explanation:
Electrons are subatomic particles with a negative charge, protons are subatomic particles with a negative charge, and neutrons have no charge. When a neutral atom's balance is disrupted by an extra electron, the atom becomes negatively charged.
Answer: |x+2|=xF2+4
Explanation: not sure if this is right im just guessing
Answer:
Percentage dissociated = 0.41%
Explanation:
The chemical equation for the reaction is:

The ICE table is then shown as:

Initial (M) 1.8 0 0
Change (M) - x + x + x
Equilibrium (M) (1.8 -x) x x
![K_a = \frac{[C_3H_6ClCO^-_2][H^+]}{[C_3H_6ClCO_2H]}](https://tex.z-dn.net/?f=K_a%20%20%3D%20%5Cfrac%7B%5BC_3H_6ClCO%5E-_2%5D%5BH%5E%2B%5D%7D%7B%5BC_3H_6ClCO_2H%5D%7D)
where ;


Since the value for
is infinitesimally small; then 1.8 - x ≅ 1.8
Then;




Dissociated form of 4-chlorobutanoic acid = 
Percentage dissociated = 
Percentage dissociated = 
Percentage dissociated = 0.4096
Percentage dissociated = 0.41% (to two significant digits)
Answer:
See the explanation
Explanation:
In this case, in order to get an <u>elimination reaction</u> we need to have a <u>strong base</u>. In this case, the base is the phenoxide ion produced the phenol (see figure 1).
Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).
Finally, the phenoxide will attack the <u>primary carbon</u> attached to the Cl. The C-Cl bond would be broken and the C-O would be produced <u>at the same time</u> to get a substitution (see figure 1).