T = days passed
r = rate of growth
by 0 day, or t = 0, there are 2 folks sick,

by the third day, t = 3, there are 40 folks sick,
![\bf \qquad \textit{Amount for Exponential Growth} \\\\ A=P(1 + r)^t\qquad \begin{cases} A=\textit{accumulated amount}\to &40\\ P=\textit{initial amount}\to &2\\ r=rate\to r\%\to \frac{r}{100}\\ t=\textit{elapsed time}\to &3\\ \end{cases} \\\\\\ 40=2(1+r)^3\implies 20=(1+r)^3\implies \sqrt[3]{20}=1+r \\\\\\ \sqrt[3]{20}-1=r\implies 1.7\approx r\qquad \boxed{A=2(2.7)^t}](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BAmount%20for%20Exponential%20Growth%7D%0A%5C%5C%5C%5C%0AA%3DP%281%20%2B%20r%29%5Et%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0AA%3D%5Ctextit%7Baccumulated%20amount%7D%5Cto%20%2640%5C%5C%0AP%3D%5Ctextit%7Binitial%20amount%7D%5Cto%20%262%5C%5C%0Ar%3Drate%5Cto%20r%5C%25%5Cto%20%5Cfrac%7Br%7D%7B100%7D%5C%5C%0At%3D%5Ctextit%7Belapsed%20time%7D%5Cto%20%263%5C%5C%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A40%3D2%281%2Br%29%5E3%5Cimplies%2020%3D%281%2Br%29%5E3%5Cimplies%20%5Csqrt%5B3%5D%7B20%7D%3D1%2Br%0A%5C%5C%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B20%7D-1%3Dr%5Cimplies%201.7%5Capprox%20r%5Cqquad%20%5Cboxed%7BA%3D2%282.7%29%5Et%7D)
how many folks are there sick by t = 6?
The given matrix equation is,
.
Multiplying the matrices with the scalars, the given equation becomes,
![\left[\begin{array}{cc}1.5x&9\\12&6\end{array}\right] +\left[\begin{array}{cc}y&4y\\3y&2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%269%5C%5C12%266%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dy%264y%5C%5C3y%262y%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20%20)
Adding the matrices,
![\left[\begin{array}{cc}1.5x+y&9+4y\\12+3y&6+2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%2By%269%2B4y%5C%5C12%2B3y%266%2B2y%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20)
Matrix equality gives,

Solving the equations together,

We can see that the equations are not consistent.
There is no solution.
Answer:
7
Step-by-step explanation:
Answer:
Joe and Lulu
Step-by-step explanation: