Answer:
6
Step-by-step explanation:

1. add 6x to both sides
2. subtract 6 from both sides
3. divide both sides by 4
Answer: (x^2)/25 + (16y^2)/375) = 1
Step-by-step explanation:
since foci are symetrically located on x-axis about origin, the equation of the ellipse must be of the following form:
(x^2)/(a^2) + (y^2)/(b^2) = 1, where a = semi-major axis, and b = semi-minor axis,
and: e = eccentricity = sqrt(a^2 - b^2)/a = 0.25; foci located at (+/- sqrt(a^2 - b^2),0) = (+/- 1.25,0)
---> sqrt(a^2 - b^2) = 1.25 ---> 1.25/a = 0.25 ---> a = 1.25/0.25 ---> a = 5; and sqrt(a^2 - b^2) = 1.25 = 5/4
---> a^2 - b^2 = (5/4)^2 = 25/16; or 5^2 - b^2 = 25/16 ---> 25 - b^2 = 25/16;
---> b^2 = 25 - (25/16) = 25[1 - 1/16] = 25(15)/16 = 375/16
---> (x^2)/25 + (y^2)/(375/16) = 1 ---> (x^2)/25 + (16y^2)/375) = 1
Hope this help...and correct it's been awhile..Let me know
It's easier I think to take it and go "what can I add together than makes 17, yet multiplies to 28"
although, I don't think this is a perfect square, either
(x+7)(3x-4) = 0
heres the factored form, but I couldn't even begin to say how I got it, all I know is that it works