1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
14

7B1-log~x%7D%7D%2C~~prove~that~~~z%3D10%5E%7B%5Cdfrac%7B1%7D%7B1-log~y%7D%7D.%7D" id="TexFormula1" title="\mathsf{If~~x=10^{\dfrac{1}{1-log~z}}~~and~~y=10^{\dfrac{1}{1-log~x}},~~prove~that~~~z=10^{\dfrac{1}{1-log~y}}.}" alt="\mathsf{If~~x=10^{\dfrac{1}{1-log~z}}~~and~~y=10^{\dfrac{1}{1-log~x}},~~prove~that~~~z=10^{\dfrac{1}{1-log~y}}.}" align="absmiddle" class="latex-formula">

Mathematics
1 answer:
alukav5142 [94]3 years ago
3 0
\large\begin{array}{l} \textsf{Prove the following theorem:}\\\\ 
\textsf{If }\mathsf{x=10^\frac{1}{1-\ell og\,z}}\textsf{ and 
}\mathsf{y=10^{\frac{1}{1-\ell og\,x}},}\textsf{ then 
}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}.}\\\\\\ 
\bullet~~\textsf{From the 
hypoteses, we must have:}\\\\ \mathsf{\ell og\,z\ne 1~\Rightarrow~z>0~~and~~z\ne 
10\qquad(i)}\\\\ \mathsf{\ell og\,x\ne 1~\Rightarrow~x>0~~and~~x\ne 
10\qquad(ii)} \end{array}

__________


\large\begin{array}{l} \textsf{Let's continue with the proof, using (i) and (ii) everytime}\\\textsf{it's needed.}\\\\ \textsf{If }\mathsf{x=10^{\frac{1}{1-\ell og\,z}},}\textsf{ then}\\\\ \mathsf{\ell og\,x=\ell og\!\left(10^{\frac{1}{1-\ell og\,z}}\right )}\\\\ \mathsf{\ell og\,x=\dfrac{1}{1-\ell og\,z}}\\\\ \mathsf{-\ell og\,x=\dfrac{-1}{1-\ell og\,z}} \end{array}


\large\begin{array}{l}
 \mathsf{1-\ell og\,x=1+\dfrac{-1}{1-\ell og\,z}}\\\\ \mathsf{1-\ell 
og\,x=\dfrac{1-\ell og\,z}{1-\ell og\,z}+\dfrac{-1}{1-\ell og\,z}}\\\\ 
\mathsf{1-\ell og\,x=\dfrac{1-\ell og\,z-1}{1-\ell og\,z}}\\\\ 
\mathsf{1-\ell og\,x=\dfrac{-\ell og\,z}{1-\ell 
og\,z}}\qquad\textsf{(using (i) below)} \end{array}


\large\begin{array}{l} \textsf{Since }\mathsf{\ell og\,x\ne 1,}\textsf{ both sides of the equality above will}\\\textsf{never be zero. Therefore, both sides can be inverted:}\\\\\textsf{Taking the reciprocal of both sides,}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1}{~\frac{-\ell og\,z}{1-\ell og\,z}~}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{\ell og\,z-1}{\ell og\,z}} \end{array}


\large\begin{array}{l} \textsf{From the last line above, we get as an immediate condition}\\\textsf{for z:}\\\\ \mathsf{\ell og\,z\ne 0~~\Rightarrow~~z\ne 1\qquad(iii)}\\\\\\ \textsf{Taking exponentials with base 10,}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,x}}=10^{\frac{1-\ell og\,z}{-\ell og\,z}}} \end{array}


\large\begin{array}{l}
 \textsf{But }\mathsf{10^{\frac{1}{1-\ell 
og\,x}}=y.}\textsf{ So we get}\\\\ 
\mathsf{y=10^{\frac{1-\ell og\,z}{-\ell og\,z}}}\\\\\\\textsf{then}\\\\ \mathsf{\ell og\,y=\ell og\!\left(10^{\frac{1-\ell og\,z}{-\ell
 og\,z}}\right)}\\\\ \mathsf{\ell og\,y=\dfrac{1-\ell og\,z}{-\ell 
og\,z}}\\\\ \end{array}

\large\begin{array}{l} 
\mathsf{-\ell og\,y=-\,\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ 
\mathsf{-\ell og\,y=\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell
 og\,y=1+\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell 
og\,y=\dfrac{\ell og\,z}{\ell og\,z}+\dfrac{1-\ell og\,z}{\ell 
og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{\ell og\,z+1-\ell og\,z}{\ell 
og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{1}{\ell 
og\,z}}\qquad\textsf{(using (iii) below)} \end{array}


\large\begin{array}{l} \\\\ \textsf{Notice that the right side of the equality above is a nonzero}\\\textsf{number, so it is possible to take the reciprocal of both sides:}\\\\ \mathsf{\dfrac{1}{1-\ell og\,y}=\ell og\,z}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=10^{\ell og\,z}}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=z}\\\\ \boxed{\begin{array}{c}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}} \end{array}}\\\\\\ \textsf{which is what had to be shown.} \end{array}


If you're having problems understanding the answer, try to see it through your browser: brainly.com/question/2105740


\large\begin{array}{l} \textsf{Any doubt? Please, comment below.}\\\\\\ \textsf{Best wishes! :-)} \end{array}


Tags: <em>logarithm log proof statement theorem exponential base condition hypothesis</em>

You might be interested in
Identify the coefficient and the exponent for each term of 8x ^ 4 - 2x
velikii [3]

Step-by-step explanation:

Given binomial is: 8x^4 - 2x

in \: the \: term \: 8 {x}^{4}  \\ coefficient = 8 \\ exponent = 4 \\ \\  in \: the \: term \:  - 2x  \\ coefficient =  - 2 \\ exponent = 1

4 0
3 years ago
What is the prime factorization of 45?<br> A 23 x 5<br> 32 x 5<br> 52 X 3<br> 52 X 9
Ksivusya [100]

Answer:45=3x3x5

Step-by-step explanation:

prime factorization of 45

45 ➗ 3=15

15 ➗ 3=5

5 ➗ 5=1

45=3x3x5

5 0
3 years ago
Urgent help algebra 2
Vaselesa [24]

Answer:

y = - 1/4 x + 1

Step-by-step explanation:

Find two convenient integer coordinates like   -4,2 and  4, 0

  use these points to  calculate the slope to be -1/4

   intercept is b = 1

y = -1/4 x + 1

3 0
2 years ago
Look at the comparison below3/10 is this comparison statement correct
bixtya [17]
What statement? 3/10

?
3 0
4 years ago
Read 2 more answers
X2=36 what dose this mean
Rashid [163]
It means you have to find what number equals 36 but multiplying with 2
5 0
4 years ago
Read 2 more answers
Other questions:
  • Simplify the expression (6+I)(9-4i)
    8·1 answer
  • What is the 65% of 200?​
    5·2 answers
  • a gardener has 27 pansies and 36 daisies. he plants an equal number of each type of flower in each row. what is the greatest pos
    14·1 answer
  • How many ways to make 1 dollar from pennies nickels, and dimes recurrence relation?
    7·1 answer
  • How do I solve this equation? <br><img src="https://tex.z-dn.net/?f=x%20%2B%208y%20%3D%2020%20%5C%5C%20%202x%20%2B%204y%20%3D%20
    10·2 answers
  • Simplify 7p +20-13q-4q-18+6p<br><br> a 13p + 17q-2<br> b 13p-17q+2<br> c3q+38<br> d 3q-6
    7·2 answers
  • SOMEBODY PLSSSSSSS HELP!! :(
    8·2 answers
  • Find the circumference of this circle<br> using 3 for T.<br> C~[?]<br> 15<br> C = 27Tr
    8·2 answers
  • Urgent algebra 2 help please
    6·1 answer
  • Please help me get the answers.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!