1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
14

7B1-log~x%7D%7D%2C~~prove~that~~~z%3D10%5E%7B%5Cdfrac%7B1%7D%7B1-log~y%7D%7D.%7D" id="TexFormula1" title="\mathsf{If~~x=10^{\dfrac{1}{1-log~z}}~~and~~y=10^{\dfrac{1}{1-log~x}},~~prove~that~~~z=10^{\dfrac{1}{1-log~y}}.}" alt="\mathsf{If~~x=10^{\dfrac{1}{1-log~z}}~~and~~y=10^{\dfrac{1}{1-log~x}},~~prove~that~~~z=10^{\dfrac{1}{1-log~y}}.}" align="absmiddle" class="latex-formula">

Mathematics
1 answer:
alukav5142 [94]3 years ago
3 0
\large\begin{array}{l} \textsf{Prove the following theorem:}\\\\ 
\textsf{If }\mathsf{x=10^\frac{1}{1-\ell og\,z}}\textsf{ and 
}\mathsf{y=10^{\frac{1}{1-\ell og\,x}},}\textsf{ then 
}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}.}\\\\\\ 
\bullet~~\textsf{From the 
hypoteses, we must have:}\\\\ \mathsf{\ell og\,z\ne 1~\Rightarrow~z>0~~and~~z\ne 
10\qquad(i)}\\\\ \mathsf{\ell og\,x\ne 1~\Rightarrow~x>0~~and~~x\ne 
10\qquad(ii)} \end{array}

__________


\large\begin{array}{l} \textsf{Let's continue with the proof, using (i) and (ii) everytime}\\\textsf{it's needed.}\\\\ \textsf{If }\mathsf{x=10^{\frac{1}{1-\ell og\,z}},}\textsf{ then}\\\\ \mathsf{\ell og\,x=\ell og\!\left(10^{\frac{1}{1-\ell og\,z}}\right )}\\\\ \mathsf{\ell og\,x=\dfrac{1}{1-\ell og\,z}}\\\\ \mathsf{-\ell og\,x=\dfrac{-1}{1-\ell og\,z}} \end{array}


\large\begin{array}{l}
 \mathsf{1-\ell og\,x=1+\dfrac{-1}{1-\ell og\,z}}\\\\ \mathsf{1-\ell 
og\,x=\dfrac{1-\ell og\,z}{1-\ell og\,z}+\dfrac{-1}{1-\ell og\,z}}\\\\ 
\mathsf{1-\ell og\,x=\dfrac{1-\ell og\,z-1}{1-\ell og\,z}}\\\\ 
\mathsf{1-\ell og\,x=\dfrac{-\ell og\,z}{1-\ell 
og\,z}}\qquad\textsf{(using (i) below)} \end{array}


\large\begin{array}{l} \textsf{Since }\mathsf{\ell og\,x\ne 1,}\textsf{ both sides of the equality above will}\\\textsf{never be zero. Therefore, both sides can be inverted:}\\\\\textsf{Taking the reciprocal of both sides,}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1}{~\frac{-\ell og\,z}{1-\ell og\,z}~}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{\ell og\,z-1}{\ell og\,z}} \end{array}


\large\begin{array}{l} \textsf{From the last line above, we get as an immediate condition}\\\textsf{for z:}\\\\ \mathsf{\ell og\,z\ne 0~~\Rightarrow~~z\ne 1\qquad(iii)}\\\\\\ \textsf{Taking exponentials with base 10,}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,x}}=10^{\frac{1-\ell og\,z}{-\ell og\,z}}} \end{array}


\large\begin{array}{l}
 \textsf{But }\mathsf{10^{\frac{1}{1-\ell 
og\,x}}=y.}\textsf{ So we get}\\\\ 
\mathsf{y=10^{\frac{1-\ell og\,z}{-\ell og\,z}}}\\\\\\\textsf{then}\\\\ \mathsf{\ell og\,y=\ell og\!\left(10^{\frac{1-\ell og\,z}{-\ell
 og\,z}}\right)}\\\\ \mathsf{\ell og\,y=\dfrac{1-\ell og\,z}{-\ell 
og\,z}}\\\\ \end{array}

\large\begin{array}{l} 
\mathsf{-\ell og\,y=-\,\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ 
\mathsf{-\ell og\,y=\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell
 og\,y=1+\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell 
og\,y=\dfrac{\ell og\,z}{\ell og\,z}+\dfrac{1-\ell og\,z}{\ell 
og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{\ell og\,z+1-\ell og\,z}{\ell 
og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{1}{\ell 
og\,z}}\qquad\textsf{(using (iii) below)} \end{array}


\large\begin{array}{l} \\\\ \textsf{Notice that the right side of the equality above is a nonzero}\\\textsf{number, so it is possible to take the reciprocal of both sides:}\\\\ \mathsf{\dfrac{1}{1-\ell og\,y}=\ell og\,z}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=10^{\ell og\,z}}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=z}\\\\ \boxed{\begin{array}{c}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}} \end{array}}\\\\\\ \textsf{which is what had to be shown.} \end{array}


If you're having problems understanding the answer, try to see it through your browser: brainly.com/question/2105740


\large\begin{array}{l} \textsf{Any doubt? Please, comment below.}\\\\\\ \textsf{Best wishes! :-)} \end{array}


Tags: <em>logarithm log proof statement theorem exponential base condition hypothesis</em>

You might be interested in
Jerry was given some birthday money. He puts the money in an account. Every month after that, he deposits the same amount of mon
wel
The answer is D.


Brainliest pls!
4 0
4 years ago
Read 2 more answers
Brett has $50 in a savings account. The interest rate is 10% per year and is not compounded. What is the amount of interest in o
adell [148]

Answer:

$5 interest

Step-by-step explanation:

I=prt

I=50*0.1*1

I=50*0.1

I=5

So Brett will make $5 worth of interest in 1 year

3 0
4 years ago
Triangle XYZ is reflected across the y-axis, and X = (4, –5). What are the coordinates of X’ ?
Nina [5.8K]
The coordinates of X would be X'(-4, -5).

The equation would be P(x,y) -> P'(-x, y) so you would make the x-coordinate a negative number and keep the y-coordinate the same.
3 0
3 years ago
Read 2 more answers
Which function has exactly one real solution? A. f(x) = -4x2 + 9x B. f(x) = 2x2 + 4x – 5 C. f(x) = 6x2 + 11 D. f(x) = -3x2 + 30x
yarga [219]

Answer:

A.

{ \tt{f(x) =  - 4 {x}^{2} + 9x }}

Step-by-step explanation:

{ \tt{f(x) = x( - 4x + 9)}}

5 0
3 years ago
84% 84, percent of astrid's books are fiction. What fraction of astrid's books are fiction?
yuradex [85]

Let number of  books by astrid's = x

Out of x , 84% are fiction.

So, Number of non fictional books = x - \frac{84x}{100}

                                       =  \frac{100x- 84 x}{100} =  \frac{16x}{100}

→Ratio of number of  books to  fictional books

                                     =\frac{x}{\frac{84x}{100}}\\ = \frac{100}{84}\\= \frac{25}{21}⇒[Dividing numerator and denominator by 4.]

→Out of 25 books by astrid 21 are fictional.

→ Number of fictional books by astrid = \frac{21}{25}

7 0
4 years ago
Read 2 more answers
Other questions:
  • Matt uses 3 tablespoons of breadcrumbs in his recipe for turkey meatballs. Today he must double the recipe. His tablespoon measu
    12·2 answers
  • Find an equation in standard form of the parabola passing through the points (1, -2), (2,-2), (3,-4)
    15·1 answer
  • An apartment complex can rent all 200 of its one-bedroom apartments at a monthly rate of $600. For each $20 increase in rent, 4
    10·1 answer
  • How can you tell the difference between additive comparison and multiplicative comparison?
    6·1 answer
  • PLZ ANSWER ASAP !!!
    6·1 answer
  • Calculate the length of the altitude of an iso scales triangle whose equal sides are 13cm long with a base 24cm
    11·1 answer
  • Factor the following:<br><br> x2-17x+60
    11·1 answer
  • Pls help and show work I will mark brainliest if correct no spam or else I will report
    9·1 answer
  • 4 1/10=<br>simplify? improper fraction?​
    8·2 answers
  • Round off the nec est tens 160​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!