So one trip = 4 km
two trips = 8
8 + 4 = 12
i believe your answer is 12
Thanks!
The value of c for which the considered trinomial becomes perfect square trinomial is: 20 or -20
<h3>What are perfect squares trinomials?</h3>
They are those expressions which are found by squaring binomial expressions.
Since the given trinomials are with degree 2, thus, if they are perfect square, the binomial which was used to make them must be linear.
Let the binomial term was ax + b(a linear expression is always writable in this form where a and b are constants and m is a variable), then we will obtain:

Comparing this expression with the expression we're provided with:

we see that:

Thus, the value of c for which the considered trinomial becomes perfect square trinomial is: 20 or -20
Learn more about perfect square trinomials here:
brainly.com/question/88561
Answer:
option C. 
Step-by-step explanation:
we have that
The point (-5,-12) belong to the III quadrant
so
The value of the cosine is negative
Applying the Pythagoras Theorem
Find the value of the hypotenuse

The value of cosine of angle θ is the ratio between the side adjacent to angle θ and the hypotenuse

Answer:
b and d
Step-by-step explanation:
they both have b
Answer:- a.The given expression is equivalent to 
Given expression:- ![[\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}}]^{-2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B%283xy%5E%7B-5%7D%29%5E3%7D%7B%28x%5E%7B-2%7Dy%5E2%29%5E%7B-4%7D%7D%5D%5E%7B-2%7D)
![=[\frac{(3)^3x^3y^{-5\times3}}{x^{-2\times-4}y^{2\times-4}}]^{-2}.........(a^m)^n=a^{mn}](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B%283%29%5E3x%5E3y%5E%7B-5%5Ctimes3%7D%7D%7Bx%5E%7B-2%5Ctimes-4%7Dy%5E%7B2%5Ctimes-4%7D%7D%5D%5E%7B-2%7D.........%28a%5Em%29%5En%3Da%5E%7Bmn%7D)
![=[\frac{27x^3y^{-15}}{x^8y^{-8}}]^{-2}](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B27x%5E3y%5E%7B-15%7D%7D%7Bx%5E8y%5E%7B-8%7D%7D%5D%5E%7B-2%7D)
![=[27x^{3-8}y^{-15-(-8)}]^{-2}............\frac{a^m}{a^n}=a^{m-n}](https://tex.z-dn.net/?f=%3D%5B27x%5E%7B3-8%7Dy%5E%7B-15-%28-8%29%7D%5D%5E%7B-2%7D............%5Cfrac%7Ba%5Em%7D%7Ba%5En%7D%3Da%5E%7Bm-n%7D)
![=[27x^{-5}y^{-7}]^{-2}=(27)^{-2}(x^{-5})^{-2}(y^{-7})^{-2}.........(a^m)^n=a^{mn}](https://tex.z-dn.net/?f=%3D%5B27x%5E%7B-5%7Dy%5E%7B-7%7D%5D%5E%7B-2%7D%3D%2827%29%5E%7B-2%7D%28x%5E%7B-5%7D%29%5E%7B-2%7D%28y%5E%7B-7%7D%29%5E%7B-2%7D.........%28a%5Em%29%5En%3Da%5E%7Bmn%7D)

Thus a. is the right answer.