8x2+6x-2
I think! because 8,6, and 2 are all divisible by 2
and 3. Factor the quadratic
2(4x-1)(x+1)
Answer:
ima say 32 bc i used a calculator
Step-by-step explanation:
Answer: option a.

Explanation:
A <em>shrink</em> of a function is a <em>shrink</em> on the vertical direction. It means that for a certain value of x, the new function will have a lower value, in the intervals where the function is positive, or a higher value, in those intervals where the function is negative. This is, the image of the new function is shortened in the vertical direction.
That is the reason behind the rule:
- given f(x), the graph of the function a×f(x), when a > 1, represents a vertical stretch of f(x),
- given f(x), the graph of the function a×f(x), when a < 1, represents a vertical shrink of f(x).
So, we just must apply the rule: to find a shrink of an exponential growth function, multiply the original function by a scale factor less than 1.
Since it <em>is a shrink of</em> <em>an exponential growth function</em>, the base must be greater than 1. Among the options, the functions that meet that conditon are a and b:

Now, following the rule it is the function with the fraction (1/3) in front of the exponential part which represents a <em>shrink of an exponential function</em>.
Let's begin by listing the first few multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 38, 40, 44. So, between 1 and 37 there are 9 such multiples: {4, 8, 12, 16, 20, 24, 28, 32, 36}. Note that 4 divided into 36 is 9.
Let's experiment by modifying the given problem a bit, for the purpose of discovering any pattern that may exist:
<span>How many multiples of 4 are there in {n; 37< n <101}? We could list and then count them: {40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100}; there are 16 such multiples in that particular interval. Try subtracting 40 from 100; we get 60. Dividing 60 by 4, we get 15, which is 1 less than 16. So it seems that if we subtract 40 from 1000 and divide the result by 4, and then add 1, we get the number of multiples of 4 between 37 and 1001:
1000
-40
-------
960
Dividing this by 4, we get 240. Adding 1, we get 241.
Finally, subtract 9 from 241: We get 232.
There are 232 multiples of 4 between 37 and 1001.
Can you think of a more straightforward method of determining this number? </span>