Given:
Sample Mean <span>= 30<span>
Sample size </span><span><span><span>= 1000</span></span><span>
</span></span></span>Population Standard deviation or <span><span><span>σ<span>=2</span></span><span>
</span></span>Confidence interval </span><span>= 95%</span>
to compute for the confidence interval
Population Mean or <span>μ<span><span>= sample mean ± (</span>z×<span>SE</span>)</span></span>
<span><span>where:</span></span>
<span><span>SE</span>→</span> Standard Error
<span><span>SE</span>=<span>σ<span>√n</span>= 30</span></span>√1000=0.9486
Critical Value of z for 95% confidence interval <span>=1.96</span>
<span>μ<span>=30±<span>(1.96×0.9486)</span></span><span>
</span></span><span>μ<span>=30±1.8594</span></span>
Upper Limit
<span>μ <span>= 30 + 1.8594 = 31.8594</span></span>
Lower Limit
<span>μ <span>= 30 − 1.8594 = <span>28.1406</span></span></span>
<span><span><span>
</span></span></span>
<span><span><span>answer: 28.1406<u<31.8594</span></span></span>
Answer:
119
Step-by-step explanation:
Divided by x and y for total engagement of relationship between two beings of equation.
Answer: AAA similarity.
Step-by-step explanation: CB is the transversal for the parallel lines AB and DE, and so by transverse property, we have ∠CED ≅ ∠CBA. Similarly, CA acts as a tranversal for the same pair of parallel lines AB and DE and using the same property, we can have ∠CDE ≅ ∠CAB. Now, in triangles CED and ABC, we have
∠CED ≅ ∠CBA,
∠CDE ≅ ∠CAB
and
∠DCE ≅ ∠ACB [same angle]
Hence, by AAA (angle-angle-angle) similarity,
△CED ~ △ABC.
Thus, the correct option is AAA similarity.
………………………………………………………………..