Each piece is defined over some (limited) domain. When you are evaluating or graphing a piecewise function, you only evaluate or graph the function whose domain includes the variable value of interest.
Let the unknown consecutive integers be x, x+1
x+x+1=-95
2x+1=-95
2x=-95-1
2x=-96
x=-96/2
x=-48
x=-48
x=-48x+1=-48+1=-47
-48 and -47 are the two consecutive integers
Please mark as Brainliest
The function is

, and according to the description of the function in the problem statement, we have the following:
at t=0 after being thrown (that is, at initial time), the height of the ball is calculated by h(0) as follows:

(ft), which is the initial height, as expected.
At t=1 (sec), the height would be

.
etc.
The path is parabolic, as we know by seeing that the function is a quadratic polynomial function. This function has been given in factored form as well. From that we can see that the zeros of the function are t=7 and t=-2.
This means that at t=7 sec, the height h is 0, which means that the ball has hit the ground. t=-2 has no significance in the context of our problem so we just neglect it.
Answer: B) 7 sec
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877