Step-by-step explanation:
a1 = 27
r = -9/27 = -⅓
the formula :
an = a1. r^(n-1)
= 27. (-⅓)^(n-1)
= 3³(-3`¹)^(n-1)
= 3³(-3)^(1-n)
<em>Hey</em><em>!</em><em>!</em><em>!</em>
<em>Here's</em><em> </em><em>your</em><em> </em><em>answer</em><em>:</em>
<h3>
<em><u>Domain</u></em><em><u>:</u></em><em><u>{</u></em><em><u>(</u></em><em>0</em><em>,</em><em>2</em><em>,</em><em>3</em><em>,</em><em>8</em><em>)</em><em>}</em></h3><h3>
<em>Range</em><em>:</em><em>{</em><em>(</em><em>2</em><em>,</em><em>3</em><em>,</em><em>7</em><em>,</em><em>9</em><em>)</em><em>}</em></h3>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>. </em><em> </em><em> </em><em> </em><em> </em>
<h3>
<em>have</em><em> </em><em>a</em><em> </em><em>great</em><em> </em><em>day</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em></h3>
<span>Find the equation of the line parallel to the line y = 4x – 2 that passes through the point (–1, 5).
</span>y = 4x – 2 has slope = 4
<span>parallel lines have same slope so slope = 4
</span><span>passes through the point (–1, 5).
</span><span>y = mx+b
5 = 4(-1) + b
b =9
equation
y = 4x + 9
answer
The slope of y = 4x – 2 is 4
The slope of a line parallel to y = 4x – 2 is 4
The equation of the line parallel to y = 4x – 2 that passes through the point (–1, 5) is y = 4x + 9</span>
F(x)=x⁴-1
f'(x)=4x³
Newton’s Method: x[n+1]=x[n]-f(x[n])/f'(x[n]); x[n+1]=x[n]-(x[n]⁴-1)/4x[n]³
x₁=3.00390625
x₂=2.26215...
x₃=1.7182...
X'=X-(X⁴-1)/4X³=X-X/4+1/4X³ is a symbolic way of writing the recursive formula, where X' represents the next iteration.
When X'≈X, -X/4+1/4X³≈0; so X/4≈1/4X³; X≈1/X³, so X⁴≈1 and X⁴-1≈0. But this is f(x)≈0. Hence Newton’s Method converges to a solution.
The rate of change is x[n+1]-x[n]=-(x[n]⁴-1)/4x[n]³=x[n]/4-1/4x[n]³ or symbolically -X/4+1/4X³.
Note that the method converges to one solution. A different x₀ will possibly converge to the solution x=-1.
Answer:
do you have a picture?
Step-by-step explanation:
I can't go off of just that (not enough info)