Depreciation formula A = P(a - r)^t
A = 43,750(1 - .11)^t
A = 43,750(.89)^5
A = $24,430.26
You would multiply 50x16 being 16 ounces= 1 pound and than divide that by 10
Step-by-step answer:
Answer to problems of this kind is the reciprocal of the harmonic mean of the time required.
We need to find the average of the speeds, not the average of the time.
The respective speeds are 1/3 and 1/4.
The average of the speeds is therefore (1/3+1/4)/2 = 7/24 (harmonic mean of the time taken).
The time required is therefore the reciprocal of the unit speed,
T = 1/(7/24) = 24/7 = 3 3/7 minutes, or approximately 3.43 minutes.
9514 1404 393
Answer:
- Translate P to E; rotate ∆PQR about E until Q is coincident with F; reflect ∆PQR across EF
- Reflect ∆PQR across line PR; translate R to G; rotate ∆PQR about G until P is coincident with E
Step-by-step explanation:
The orientations of the triangles are opposite, so a reflection is involved. The various segments are not at right angles to each other, so a rotation other than some multiple of 90° is involved. A translation is needed in order to align the vertices on top of one another.
The rotation is more easily defined if one of the ∆PQR vertices is already on top of its corresponding ∆EFG vertex, so that translation should precede the rotation. The reflection can come anywhere in the sequence.
__
<em>Additional comment</em>
The mapping can be done in two transformations: translate a ∆PQR vertex to its corresponding ∆EFG point; reflect across the line that bisects the angle made at that vertex by corresponding sides.
Answer: Option C - Construction Y because point E is the circumcentre of triangle LMN.
Point E is the best location for the warehouse as it is exactly equidistant from the three stores at L, M and N.
Step-by-step explanation:
Before solving an algebra problem, it sometimes helps to get a geometric picture of what's happening. Geometry says that three points determine a circle - in other words, given three points that are not
all on the same line, there is exactly one circle which passes through all 3. Finding the point equidistant from the 3 points is the same thing as finding the center of the circle that passes through all of them (since all points on a circle are equidistant from the center).
Our points are L, M and N. Draw the lines LM, LN and MN to form a triangle. Now construct the perpendicular bisectors of any two of the lines, and their intersection, point E, will be the center of this circle.
As shown in the Construction Y because E is the circumcentre of triangle LMN.
This is the best location for the warehouse as it is exactly equidistant from the three stores at L, M and N.
QED!