I’m not sure that question.... sorry
Answer:
135 and 135
Step-by-step explanation:
The computation is shown below:
The number of examiners who passed in only one subject is as follows
= n(E) - n(E ∩M) + n(M) - n(E ∩M)
= (80 - 60 + 70 - 60)%
= 30%
Now the number of students who passed in minimum one subject is
n(E∪M) = n(E) + n(M) - n(E ∩M)
= 80 - + 70 - 60
= 90%
Now the number of students who failed in both subjects is
= 100 - 90%
= 10% of total students
= 45
So total number of students appeared for this 450
So, those who passed only one subject is
= 450 × 30%
= 135
Now the Number of students who failed in mathematics is
= 100% - Passed in Mathematics
= 100% - 70%
= 30% of 450
= 135
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that 
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus


Heights of 29.5 and below could be a problem.
Step-by-step explanation:
x+100°=180°{being straight angle}
x=180-100
x=80°
again,
45°+x+y=180°{sum of angle of triangle}
45+80+y=180
y=180-125°
y=55°
hope it helps.
Answer:
4y - 12
Step-by-step explanation:
I hope this helps