Answer= x³+4x²+16x+64
Expand the following:(x + 4 i) (x - 4 i) (x + 4)
(x - 4 i) (x + 4) = (x) (x) + (x) (4) + (-4 i) (x) + (-4 i) (4) = x^2 + 4 x - 4 i x - 16 i = -16 i + (4 - 4 i) x + x^2:
-16 i + (-4 i + 4) x + x^2 (4 i + x)
| | | | x | + | 4 i
| | x^2 | + | (4 - 4 i) x | - | 16 i
| | | | (-16 i) x | + | 64
| | (4 - 4 i) x^2 | + | (16 + 16 i) x | + | 0
x^3 | + | (4 i) x^2 | + | 0 | + | 0
x^3 | + | 4 x^2 | + | 16 x | + | 64:
Answer: x^3 + 4 x^2 + 16 x + 64
Answer:
& 
Step-by-step explanation:
1) Subtract
from both sides. This should leave you with
.
2) Square root both sides. This should leave you with
&
.
<em>You can stop here if this is what the problem is asking for. However, it is not fully simplified.</em>
<em />
3) Factor the equation. This should leave you with
&
.
Also known as the hypotenuse leg theorem. It states that if the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, then the triangles are congruent.' This is kind of like the SAS, or side-angle-side postulate. Congruent triangles.
Answer:
y=-2
Step-by-step explanation: