Answer:
a) At a given temperature, C₂H₆ has a higher vapor pressure than C₄H₁₀.
Explanation:
<em>Which statement below is true?
</em>
<em>a) At a given temperature, C₂H₆ has a higher vapor pressure than C₄H₁₀. </em>TRUE. C₂H₆ has a lower molar mass than C₄H₁₀ and a higher vapor pressure at most temperatures.
<em>b) The strongest intermolecular attractive forces present in liquid CCl₄ are dipole-dipole forces.</em> FALSE. CCl₄ is nonpolar, so the strongest intermolecular forces are dispersion forces.
<em>c) HCl has a higher boiling point than LiCl.</em> FALSE. LiCl (ionic compound) has a higher boiling point than HCl (covalent compound).
<em>d) H₂O has a greater polarizability than H₂Se.</em> FALSE. Se has a larger atomic radius than O which is why H₂Se has a greater polarizability than H₂O.
<em>e) In general, the stronger the intermolecular attractive forces, the lower the ∆Hºvap.</em> FALSE. In general, the stronger the intermolecular attractive forces, the higher the ∆Hºvap.
Fe: 2 x 55.845 = 111.69
O: 3 x 15.9994= 47.9982
111.69 + 47.9982 = 159.69 g/mol
The proton and neutron are so similar in mass that both of their relative masses = 1.
it shoudl be : 2Fe(NO3)3 + 3MgSO4 → 3Mg(NO3)2 + Fe2(SO4)3
(the difference is Fe2(SO4)3 has no coefficient)