Answer:
3 strain would still alive after 48 hours
Step-by-step explanation:
Initial population of virus = 40000 grams
A certain virus is dying off at a rate of 18% per hour.
We are supposed to find how much of the strain would still be alive after 48 hours
Formula : 
=Initial population
N(t)= Population after t hours
r = rate of decrease = 18% = 0.18
t = time = 48 hours
So,the strain would still be alive after 48 hours=
Hence 3 strain would still alive after 48 hours
Yea that’s a nice graph i’d say looks a little fishy though
Answer:
6p + 4d = 36
Step-by-step explanation:
If p = number of pins and d = number of major decisions, then the equation is 6p + 4d = 36.
Hope this helps!
We can figure this out using the explicit formula.

n represents the term we are looking for.
f(1) represents the first term in the sequence, which in this case, is 7.
d represents the common difference, which in this case, is +3.
f(n) = 7 + 3(n - 1)
f(n) = 7 + 3n - 3
f(n) = 4 + 3n
Now, we can input 214 for n and solve.
f(214) = 4 + 3(214)
f(214) = 4 + 642
f(214) = 646
The 214th term in this sequence is 646.
7% of $5100 is 357
416.50 / 357 = 1.16
I will take 1.16 years to gain $416.50