Answer: 8.9%
Step-by-step explanation: 13 - 4.1
Let A=(0,0)(x₁,x₂), B=(6,0)(x₂,y₂) and C=(0,6)(x₃,y₃)
Centroid of ΔABC is given by,
G(x,y) = [x₁+x₂+x₃/3 , y₁+y₂+y₃/3] = [0+6+0/3 , 0+0+6/3] = [2,2]
Vertex form:
y-k=a(x-h)^2
h=-2,k=-20,y=-12 when x=0
thus;
-12+20=a(0+2)^2
8=4a
a=2
Equation:
y+20=2(x+2)^2
y+20=2(x^2+4x+4)
f(x)=2(x^2+4x+4)-20
f(x)=2x^2+8x+8-20
f(x)=2x^2+8x-20
Given width is 24 less than length.
W=L-24
Perimeter = 2(W+L)=2(L-24+L)=4L-48
But we're also given perimeter = 172'
Therefore 4L-48=172
solve for L
4L=172+48=220
L=55'
W=55-24 = 31'
Check: Perimeter = 2(W+L)=2(31+55)=2*86=172' good!
Answer: The dimensions of the garden are 31' * 55'