Angle D is 180° -75° -45° = 60°. Drawing altitude MX to segment DN divides the triangle into ΔMDX, a 30°-60°-90° triangle, and ΔMNX, a 45°-45°-90° triangle. We know the side ratios of such triangles (shortest-to-longest) are ...
... 30-60-90: 1 : √3 : 2
... 45-45-90: 1 : 1 : √2
The long side of ΔMDX is 10√3, so the other two sides are
... MX = MD(√3/2) = 15
... DX = MD(1/2) = 5√3
The short side of ΔMNX is MX = 15, so the other two sides are
... NX = MX(1) = 15
... MN = MX(√2) = 15√2
Then the perimeter of ΔDMN is ...
... P = DM + MN + NX + XD
... P = 10√3 +15√2 + 15 + 5√3
... P = 15√3 +15√2 +15 . . . . perimeter of ΔDMN
If the limit of f(x) as x approaches 8 is 3, can you conclude anything about f(8)? The answer is No. We cannot. See the explanation below.
<h3>What is the justification for the above position?</h3>
Again, 'No,' is the response to this question. The justification for this is that the value of a function does not depend on the function's limit at a given moment.
This is particularly clear when we consider a question with a gap. A rational function with a hole is an excellent example that will help you answer this question.
The limit of a function at a position where there is a hole in the function will exist, but the value of the function will not.
<h3>What is limit in Math?</h3>
A limit is the result that a function (or sequence) approaches when the input (or index) near some value in mathematics.
Limits are used to set continuity, derivatives, and integrals in calculus and mathematical analysis.
Learn more about limits:
brainly.com/question/23935467
#SPJ4
Answer:
Step-by-step explanation:
<h3>#4</h3>
According to diagram we have
- QR ≅ QT
- QS ≅ QS (common side)
- QSR ≅ QST (both right angles)
Considering above we can state
- QSR ≅ QST by HL (hypotenuse-leg)
<h3>#5</h3>
Two angles are congruent but the order of angles is not same
Triangles are not similar.
<h3>#6</h3>
Two angles and a side are congruent but the order of angles is not same.
Triangles are not similar.
My property ..............................