Answer:
y=4x-2
you can find the y intercept if you plot a confirmed point on a graph and follow the slope to the line.
Answer:
The bolts with diameter less than 5.57 millimeters and with diameter greater than 5.85 millimeters should be rejected.
Step-by-step explanation:
We have been given that the diameters of bolts produced in a machine shop are normally distributed with a mean of 5.71 millimeters and a standard deviation of 0.08 millimeters.
Let us find the sample score that corresponds to z-score of bottom 4%.
From normal distribution table we got z-score corresponding to bottom 4% is -1.75 and z-score corresponding to top 4% or data above 96% is 1.75.
Upon substituting these values in z-score formula we will get our sample scores (x) as:
![z=\frac{x-\mu}{\sigma}](https://tex.z-dn.net/?f=z%3D%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D)
![-0.14=x-5.71](https://tex.z-dn.net/?f=-0.14%3Dx-5.71)
Therefore, the bolts with diameters less than 5.57 millimeters should be rejected.
Now let us find sample score corresponding to z-score of 1.75 as upper limit.
![0.14=x-5.71](https://tex.z-dn.net/?f=0.14%3Dx-5.71)
![0.14+5.71=x-5.71+5.71](https://tex.z-dn.net/?f=0.14%2B5.71%3Dx-5.71%2B5.71)
Therefore, the bolts with diameters greater than 5.85 millimeters should be rejected.
Given: ![f(x) = \frac{1}{x-2}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B1%7D%7Bx-2%7D)
![g(x) = \frac{2x+1}{x}](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%5Cfrac%7B2x%2B1%7D%7Bx%7D)
A.)Consider
![f(g(x))= f(\frac{2x+1}{x} )](https://tex.z-dn.net/?f=f%28g%28x%29%29%3D%20f%28%5Cfrac%7B2x%2B1%7D%7Bx%7D%20%29)
![f(\frac{2x+1}{x} )=\frac{1}{(\frac{2x+1}{x})-2}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B2x%2B1%7D%7Bx%7D%20%29%3D%5Cfrac%7B1%7D%7B%28%5Cfrac%7B2x%2B1%7D%7Bx%7D%29-2%7D)
![f(\frac{2x+1}{x} )=\frac{1}{\frac{2x+1-2x}{x}}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B2x%2B1%7D%7Bx%7D%20%29%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B2x%2B1-2x%7D%7Bx%7D%7D)
![f(\frac{2x+1}{x} )=\frac{x}{1}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B2x%2B1%7D%7Bx%7D%20%29%3D%5Cfrac%7Bx%7D%7B1%7D)
![f(\frac{2x+1}{x} )=1](https://tex.z-dn.net/?f=f%28%5Cfrac%7B2x%2B1%7D%7Bx%7D%20%29%3D1)
Also,
![g(f(x))= g(\frac{1}{x-2} )](https://tex.z-dn.net/?f=g%28f%28x%29%29%3D%20g%28%5Cfrac%7B1%7D%7Bx-2%7D%20%29)
![g(\frac{1}{x-2} )= \frac{2(\frac{1}{x-2}) +1 }{\frac{1}{x-2}}](https://tex.z-dn.net/?f=g%28%5Cfrac%7B1%7D%7Bx-2%7D%20%29%3D%20%5Cfrac%7B2%28%5Cfrac%7B1%7D%7Bx-2%7D%29%20%2B1%20%7D%7B%5Cfrac%7B1%7D%7Bx-2%7D%7D)
![g(\frac{1}{x-2} )= \frac{\frac{2+x-2}{x-2} }{\frac{1}{x-2}}](https://tex.z-dn.net/?f=g%28%5Cfrac%7B1%7D%7Bx-2%7D%20%29%3D%20%5Cfrac%7B%5Cfrac%7B2%2Bx-2%7D%7Bx-2%7D%20%7D%7B%5Cfrac%7B1%7D%7Bx-2%7D%7D)
![g(\frac{1}{x-2} )= \frac{x }{1}](https://tex.z-dn.net/?f=g%28%5Cfrac%7B1%7D%7Bx-2%7D%20%29%3D%20%5Cfrac%7Bx%20%7D%7B1%7D)
![g(\frac{1}{x-2} )= x](https://tex.z-dn.net/?f=g%28%5Cfrac%7B1%7D%7Bx-2%7D%20%29%3D%20x)
Since, ![f(g(x))=g(f(x))=x](https://tex.z-dn.net/?f=f%28g%28x%29%29%3Dg%28f%28x%29%29%3Dx)
Therefore, both functions are inverses of each other.
B.
For the Composition function ![f(g(x)) = f(\frac{2x+1}{x} )=x](https://tex.z-dn.net/?f=f%28g%28x%29%29%20%3D%20f%28%5Cfrac%7B2x%2B1%7D%7Bx%7D%20%29%3Dx)
Since, the function
is not defined for
.
Therefore, the domain is ![(-\infty,0)\cup(0,\infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C0%29%5Ccup%280%2C%5Cinfty%29)
For the Composition function ![g(f(x)) =g(\frac{1}{x-2} )=x](https://tex.z-dn.net/?f=g%28f%28x%29%29%20%3Dg%28%5Cfrac%7B1%7D%7Bx-2%7D%20%29%3Dx)
Since, the function
is not defined for
.
Therefore, the domain is ![(-\infty,2)\cup(2,\infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C2%29%5Ccup%282%2C%5Cinfty%29)
Answer:(1,1)
Step-by-step explanation:
Its asking where both linear and curve lines are being hit,
(fxg)(0)= 1,1
I believe that’s 16 cups. I could be wrong but probably right lol