Answer:
Equations made up of multiple variables like formulas.
Step-by-step explanation:
Similar to how y = mx+b has many letters in it but we can input known values to solve for the values that we want.
36 i guess ha please that not right
Let S(t) denote the amount of sugar in the tank at time t. Sugar flows in at a rate of
(0.04 kg/L) * (2 L/min) = 0.08 kg/min = 8/100 kg/min
and flows out at a rate of
(S(t)/1600 kg/L) * (2 L/min) = S(t)/800 kg/min
Then the net flow rate is governed by the differential equation

Solve for S(t):


The left side is the derivative of a product:
![\dfrac{\mathrm d}{\mathrm dt}\left[e^{t/800}S(t)\right]=\dfrac8{100}e^{t/800}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5Be%5E%7Bt%2F800%7DS%28t%29%5Cright%5D%3D%5Cdfrac8%7B100%7De%5E%7Bt%2F800%7D)
Integrate both sides:



There's no sugar in the water at the start, so (a) S(0) = 0, which gives

and so (b) the amount of sugar in the tank at time t is

As
, the exponential term vanishes and (c) the tank will eventually contain 64 kg of sugar.
Answer:
d.
Step-by-step explanation:
The goal of course is to solve for x. Right now there are 2 of them, one on each side of the equals sign, and they are both in exponential positions. We have to get them out of that position. The way we do that is by taking the natural log of both sides. The power rule then says we can move the exponents down in front.
becomes, after following the power rule:
x ln(2) = (x + 1) ln(3). We will distribute on the right side to get
x ln(2) = x ln(3) + 1 ln(3). The goal is to solve for x, so we will get both of them on the same side:
x ln(2) - x ln(3) = ln(3). We can now factor out the common x on the left to get:
x(ln2 - ln3) = ln3. The rule that "undoes" that division is the quotient rule backwards. Before that was a subtraction problem it was a division, so we put it back that way and get:
. We can factor out the ln from the left to simplify a bit:
. Divide both sides by ln(2/3) to get the x all alone:

On your calculator, you will find that this is approximately -2.709