Genetic relationships, gene expression patterns, microRNAs, and active hormonal controls all contribute to the genetic foundation of leaf form. organelle 1 is large vacuole, 2nd organelle is mitochondria, organelle 3 is nucleus and organelle 4 is cell wall.
The size of the cell and the number of cells determine the size of the leaf. Plant hormones, growth-regulating factors (GRFs), TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP), WUSCHEL RELATED HOMEOBOX (WOX), and other regulatory factors control cell expansion and differentiation [3,4].
Rough E.R. makes and transports substances through the cell and Smooth E.R. does not have ribosomes; Ribosome make protein for the cell.
For more details regarding cell wall, visit
brainly.com/question/10945910
#SPJ2
Answer:
The answer is Norepinephrine.
Explanation:
Acetylcholine (Ach) and Norepinephrine (NE) are both chemical substances (neurotransmitters) released primarily by nerve cells and they affect different parts and systems of the body. Acetylcholine mostly targets the muscles and the brain and it is a part of the parasymphatetic nervous system whereas norepinephrine targets the whole body and has an effect that leads to the contraction of muscles and the increase of the heart rate. Norepinephrine is a part of the symphatetic nervous system.
Since the symphatetic nervous system is responsible for the crucial "fight-or-flight" response of our body, it has a more dramatic effect on the muscle contraction. Norepinephrine, being a part of the symphatetic nervous system, should result in a more drastic change in contractile force.
I hope this answer helps.
Answer:
The chlorine from the chlorofluorocarbons reacts with free molecules of oxygen causing a stop in ozone production. ... Free oxygen atoms can replace the chlorine in chlorine monoxide, releasing a free atom of chlorine which can then recombine with an oxygen atom in ozone, destroying more ozone.