1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
3 years ago
7

I need help please asap 10 points!

Mathematics
1 answer:
earnstyle [38]3 years ago
4 0

Answer:

1) Real Number

2)Whole Number

3)Irrational Number

4)Rational Number

5)Integers

6)Natural Numbers

You might be interested in
I really need it to be sold in imaginary numbers
Yuliya22 [10]
Solving a 5th grade polynomial

We want to find the answer of the following polynomial:

x^5+3x^4+3x^3+19x^2-54x-72=0

We can see that the last term is -72

We want to find all the possible numbers that can divide it. Those are:

{±1, ±2, ±3, ±4, ±6, ±8, ±9, ±12, ±18, ±36, ±72}

We want to factor this polynomial in order to find all the possible x-values. In order to factor it we will have to find some binomials that can divide it using the set of divisors of -72.

We know that if

(x - z) is a divisor of this polynomial then z might be a divisor of the last term -72.

We will verify which is a divisor using synthetic division. If it is a divisor then we can factor using it:

Let's begin with

(x-z) = (x - 1)

We want to divide

\frac{(x^5+3x^4+3x^3+19x^2-54x-72)}{x-1}

Using synthetic division we have that if the remainder is 0 it will be a factor

We can find the remainder by replacing x = z in the polynomial, when it is divided by (x - z). It is to say, that if we want to know if (x -1) is a factor of the polynomial we just need to replace x by 1, and see the result:

If the result is 0 it is a factor

If it is different to 0 it is not a factor

Replacing x = 1

If we replace x = 1, we will have that:

\begin{gathered} x^5+3x^4+3x^3+19x^2-54x-72 \\ \downarrow \\ 1^5+3\cdot1^4+3\cdot1^3+19\cdot1^2-54\cdot1-72 \\ =1+3+3+19-54-72 \\ =-100 \end{gathered}

Then the remainder is not 0, then (x - 1) is not a factor.

Similarly we are going to apply this until we find factors:

(x - z) = (x + 1)

We replace x by -1:

\begin{gathered} x^5+3x^4+3x^3+19x^2-54x-72 \\ \downarrow \\ (-1)^5+3\cdot(-1)^4+3\cdot(-1)^3+19\cdot(-1)^2-54\cdot(-1)-72 \\ =-1+3-3+19+54-72 \\ =0 \end{gathered}

Then, (x + 1) is a factor.

Using synthetic division we have that:

Then:

x^5+3x^4+3x^3+19x^2-54x-72=(x+1)(x^4+2x^3+x^2+18x-72)

Now, we want to factor the 4th grade polynomial.

Let's remember our possibilities:

{±1, ±2, ±3, ±4, ±6, ±8, ±9, ±12, ±18, ±36, ±72}

Since we verified ±1, let's try with ±2 as we did before.

(x - z) = (x - 2)

We want to divide:

\frac{x^4+2x^3+x^2+18x-72}{x-2}

We replace x by z = 2:

\begin{gathered} x^4+2x^3+x^2+18x-72 \\ \downarrow \\ 2^4+2\cdot2^3+2^2+18\cdot2-72 \\ =16+16+4+36-72 \\ =0 \end{gathered}

Then (x - 2) is a factor. Let's do the synthetic division:

Then,

x^4+2x^3+x^2+18x-72=(x-2)(x^3+4x^2+9x+36)

Then, our original polynomial is:

\begin{gathered} x^5+3x^4+3x^3+19x^2-54x-72 \\ =\mleft(x+1\mright)\mleft(x^4+2x^3+x^2+18x-72\mright) \\ =(x-1)(x-2)(x^3+4x^2+9x+36) \end{gathered}

Now, let's prove if (x +2) is a factor, using the new 3th grade polynomial.

(x - z) = (x + 2)

We replace x by z = -2:

\begin{gathered} x^3+4x^2+9x+36 \\ \downarrow \\ (-2)^3+4(-2)^2+9(-2)+36 \\ =-8+16-18+36 \\ =26 \end{gathered}

Since the remainder is not 0, (x +2) is not a factor.

All the possible cases are:

{±1, ±2, ±3, ±4, ±6, ±8, ±9, ±12, ±18, ±36, ±72}

let's prove with +4

(x - z) = (x + 4)

We want to divide:

\frac{x^3+4x^2+9x+36}{x+4}

Let's replace x by z = -4 in order to find the remainder:

\begin{gathered} x^3+4x^2+9x+36 \\ \downarrow \\ (-4)^3+4(-4)^2+9(-4)+36 \\ =-64+64-36+36 \\ =0 \end{gathered}

Then (x + 4) is a factor. Let's do the synthetic division:

Then,

x^3+4x^2+9x+36=(x+4)(x^2+9)

Since

x² + 9 cannot be factor, we have completed our factoring:

\begin{gathered} x^5+3x^4+3x^3+19x^2-54x-72 \\ =(x-1)(x-2)(x^3+4x^2+9x+36) \\ =(x-1)(x-2)(x+4)(x^2+9) \end{gathered}

Now, we have the following expression:

(x-1)(x-2)(x+4)(x^2+9)=0

Then, we have five posibilities:

(x - 1) = 0

or (x - 2) = 0

or (x + 4) = 0

or (x² + 9) = 0

Then, we have five solutions;

x - 1 = 0 → x₁ = 1

x - 2 = 0 → x₂ = 2

x + 4 = 0 → x₃ = -4

x² + 9 = 0 → x² = -9 → x = ±√-9 = ±√9√-1 = ±3i

→ x₄ = 3i

→ x₅ = -3i

<h2><em>Answer- the solutions of the polynomial are: x₁ = 1, x₂ = 2, x₃ = -4, x₄ = 3i and x₅ = -3i</em></h2>

7 0
1 year ago
Factor this polynomial completely x^2-10x+25
san4es73 [151]

<u>x^2-10x+25</u>

=x^2-5x-5x+25

x(x-5)-5(x-5)

<u>=</u><u>(</u><u>x-5)</u><u>(</u><u>x-5)</u>

<u>x=</u><u>5</u><u> </u><u>,</u><u> </u><u>x=</u><u>5</u><u> </u>

hope it's helpful to you

5 0
3 years ago
Read 2 more answers
A contractor bought 7.6 ft squared of sheet metal. She has used 4.9 ft squared so far and has ​$43.20 worth of sheet metal remai
Karo-lina-s [1.5K]

Answer:

$16 per square foot

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Which of the following graphs is the graph of a linear function?
ziro4ka [17]

Answer:

C

Step-by-step explanation:

A and B are not straight lines, so they are not linear functions.

C and D are straight lines, so they are linear. However, D fails the vertical line test, so it is not a function.

3 0
3 years ago
Can someone please help me .?
MariettaO [177]

Answer:

5

Step-by-step explanation:

5+7

4 0
3 years ago
Other questions:
  • Y^3-27=9y^2-27y how to factor
    14·1 answer
  • the area of a triangular sail is given by the expression 1/2bh, where b is the length of the base and hi is the height. What is
    5·2 answers
  • Multiply: (-22)(38)
    13·2 answers
  • What is the slope of the line on the graph?<br> Enter your answer in the box.
    12·2 answers
  • What set of numbers are shaded on the hundred chart.
    13·2 answers
  • A + 4, for a = 32<br> Please help!
    11·1 answer
  • Which point is a focus of the hyperbola? (−11,−4) (−3,−4) (2,−4) (2, 8)
    9·2 answers
  • Can someone please help me with this find the unit rate of these 2 items cost per item which is these 2 bag of chips set it up p
    5·1 answer
  • A bookstore sells textbooks for $70 each and notebooks for $5 each. The bookstore would like to sell $805 in merchandise by the
    13·1 answer
  • If johnny gets 2 apples every 5 minuets how much apples does johnny have in 8 hours.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!