Answer:
24?
Step-by-step explanation:
If you add 20, 22, and 24, you get 66. I dont know if this helped.
(1) 3x+6y-12z=36
(2) x+2y-4z=12
(3) 4x+8y-16z=48
The first equation (1) is the second equation (2) multiplied by 3:
(2) x+2y-4z=12→3(x+2y-4z=12)→3x+6y-12z=36 (1)
The third equation (3) is the second equation (2) multiplied by 4:
(2) x+2y-4z=12→4(x+2y-4z=12)→4x+8y-16z=48 (3)
The equations are linearly dependent, Then the system of equations is dependent, and then consistent too.
Answer:
The distance between these 2 points is 13.
Step-by-step explanation:
Picture the 2 points on a graph as a right triangle, where the hypotenuse of that right triangle is the distance between the points. It is very easy to find the length of the legs of that triangle, and you can use those legs to calculate the length of the hypotenuse.
First, find the vertical distance, or the distance between the y-coordinates. Either just look at a graph and count, or subtract them.

Distance is an absolute value from 0, so -12 is the same as 12.
Next, find the horizontal distance between the x-coordinates.

Now, we have the length of the legs, 5 and 12. Use the pythagorean theorem to find the length of the hypotenuse:

The distance between these 2 points is 13.
2 (of whatever unit you’re using)
(1*4)/2 is the equation btw
Answer:
<em>Do</em><em> </em><em>2.78</em><em>×</em><em>103</em><em> </em><em>=</em><em> </em><em>286.34</em><em> </em>
Step-by-step explanation:
<em>In</em><em> </em><em>standard</em><em> </em><em>form</em><em>:</em><em> </em>
<em>200</em><em>+</em><em>80</em><em>+</em><em>6</em><em>+</em><em>0</em><em>.</em><em>3</em><em>+</em><em>0.04</em><em> </em>
<em>PLEASE</em><em> </em><em>THANK</em><em>,</em><em> </em><em>RATE</em><em> </em><em>AND</em><em> </em><em>FOLLOW</em><em> </em><em>ME</em><em>,</em>
<em>AND</em><em> </em><em>PLEASE</em><em> </em><em>MARK</em><em> </em><em>ME</em><em> </em><em>AS</em><em> </em><em>"</em><em>BRAINLIEST</em><em>"</em><em> </em><em>ANSWER</em><em> </em>
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em> </em>