1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
postnew [5]
3 years ago
6

What number must you add to complete the square? x^2 +4 =23A. 4B. 8C. 16D. 2

Mathematics
1 answer:
Alex_Xolod [135]3 years ago
8 0
A. 4 

to complete the square, take half of the the second number and square it
You might be interested in
Three consecutive integers have a sum of 48 find the integers?
zavuch27 [327]

The sum of three consecutive integers is three times the middle one: if we call the middle one x, the three numbers are

x-1,\ x,\ x+1

So, their sum is x-1+x+x+1 = 3x

Which is three times the middle one.

So, if the sum of three consecutive intergers is 48, the middle one must be 48/3 = 16.

So, the three numbers are 15, 16 and 17

6 0
3 years ago
What is the remainder when the polynomial 6x2+11x−3 is divided by 2x−1?
o-na [289]

Answer: 4

There are three different ways to find the remainder.  Since I don't know which lesson you are working on, I will show you all three methods.

<u>Long Division:</u>

           <u>3x  +  7      </u>

2x - 1 ) 6x² + 11x - 3

       -  <u>(6x²  -  3x)</u>   ↓

                    14x  - 3

                -   (<u>14x  - 7)</u>  

                              4    

<u>Synthetic Division:</u>

2x - 1 = 0   ⇒   x = \frac{1}{2}


\frac{1}{2}   | 6      11     -3

    <u>| ↓       3     7</u>

      6      14    4

<u>Remainder Theorem:</u>

2x - 1 = 0   ⇒   x = \frac{1}{2}

f(x) = 6x² + 11x - 3

f(\frac{1}{2}) = 6(\frac{1}{2})² + 11(\frac{1}{2}) - 3

      = 6(\frac{1}{4}) + \frac{11}{2} - 3

      = \frac{3}{2} + \frac{11}{2} - \frac{6}{2}

      = \frac{8}{2}

      = 4

                                     

3 0
3 years ago
Read 2 more answers
Which of the following is a name for this line? I’m unsure of this question Pleaseee Helppp
Aleksandr-060686 [28]

Answer:C

Step-by-step explanation:

the line above AB signifies that its a line segment

there are points for A and B

7 0
3 years ago
Free
Mekhanik [1.2K]

Answer:

the answer is 2 you add one and the other one and it makes 2

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
1 year ago
Other questions:
  • A biologist observes that a certain bacterial colony triples every 4 hours and after 12 hours occupies 1 square centimeter. Assu
    6·1 answer
  • If 35 is half of a set then what is the fraction of the whole set
    10·1 answer
  • Shade a model for 1.4 divided by 0.7
    14·1 answer
  • If you have one kilogram=2.2 pounds does a 3 kilogram roast beef weight more or less than 6 pounds
    15·1 answer
  • Which is the graph of g(x) = (0.5)x+ 3 – 4?<br> 1
    12·1 answer
  • Coach Johnson needs to buy shirts he finds a package of two shirts for $16 how much will it cost to buy 18 shirts for his soccer
    13·2 answers
  • 10^7 is how many times as large as 3.10^3
    15·2 answers
  • PLEASE HELP WILL MARK BRAINLIEST
    13·1 answer
  • What is (-2)( 3 4/7)<br><br> A)-7 1/6<br><br> B)-6 6/7<br><br> C)-2 3/7<br><br> D)-1 2/7
    13·1 answer
  • The perimeter of a square is 44 cm find the area​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!