Given:
A circle of radius r inscribed in a square.
To find:
The expression for the area of the shaded region.
Solution:
Area of a circle is:

Where, r is the radius of the circle.
Area of a square is:

Where, a is the side of the square.
A circle of radius r inscribed in a square. So, diameter of the circle is equal to the side of the square.

So, the area of the square is:


Now, the area of the shaded region is the difference between the area of the square and the area of the circle.




Therefore, the correct option is (a).
<em>☽------------❀-------------☾</em>
<em>Hi there!</em>
<em>~</em>
<em>1:10000 would be the scale.</em>
<em>❀Hope this helped you!❀</em>
<em>☽------------❀-------------☾</em>
<em></em>
There are 120 ways in which 5 riders and 5 horses can be arranged.
We have,
5 riders and 5 horses,
Now,
We know that,
Now,
Using the arrangement formula of Permutation,
i.e.
The total number of ways
,
So,
For n = 5,
And,
r = 5
As we have,
n = r,
So,
Now,
Using the above-mentioned formula of arrangement,
i.e.
The total number of ways
,
Now,
Substituting values,
We get,

We get,
The total number of ways of arrangement = 5! = 5 × 4 × 3 × 2 × 1 = 120,
So,
There are 120 ways to arrange horses for riders.
Hence we can say that there are 120 ways in which 5 riders and 5 horses can be arranged.
Learn more about arrangements here
brainly.com/question/15032503
#SPJ4
Answer:
oh
Step-by-step explanation:
There is a formula which employs the use of determinants and which helps us calculate the area of a triangle if the vertices are given as
. The formula is as shown below:
Area=
Now, in our case, we have: 
, and

Thus, the area in this case will become:
Area=
Therefore, Area=![\frac{1}{2}\times [[3(-1\times 1-(-5)\times 1]-3[3\times 1-(-2)\times 1]+1[3\times -5-2]]= \frac{1}{2}\times -20=-10](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5B%5B3%28-1%5Ctimes%201-%28-5%29%5Ctimes%201%5D-3%5B3%5Ctimes%201-%28-2%29%5Ctimes%201%5D%2B1%5B3%5Ctimes%20-5-2%5D%5D%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20-20%3D-10)
We know that area cannot be negative, so the area of the given triangle is <u>10 squared units</u>.