36 divided by 2 is 18
That mean each basketball is $18
18 dollars multiplied by 3 basketballs is 54
Three basket balls cost $54
Answer: 20
Step-by-step explanation:
Q and S are parallel because the 93 degree and 87 degree angles are supplementary angles and when added together equal 180 degrees.
The answer is B.
The graph is missing. So is the set of data point values. However, I can assume that as the temperature goes up, then so does the sale of ice cream. It's not a perfect relationship, but there is a strong positive correlation between the two variables.
A positive correlation means that as one variable increases, so does the other. Also, it means that if one variable decreases, then the other variable decreases as well. The two variables move in the same direction together.
<span><span>f<span>(x)</span>=8x−6</span><span>f<span>(x)</span>=8x-6</span></span> , <span><span>[0,3]</span><span>[0,3]
</span></span>The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.<span><span>(−∞,∞)</span><span>(-∞,∞)</span></span><span><span>{x|x∈R}</span><span>{x|x∈ℝ}</span></span><span><span>f<span>(x)</span></span><span>f<span>(x)</span></span></span> is continuous on <span><span>[0,3]</span><span>[0,3]</span></span>.<span><span>f<span>(x)</span></span><span>f<span>(x)</span></span></span> is continuousThe average value of function <span>ff</span> over the interval <span><span>[a,b]</span><span>[a,b]</span></span> is defined as <span><span>A<span>(x)</span>=<span>1<span>b−a</span></span><span>∫<span>ba</span></span>f<span>(x)</span>dx</span><span>A<span>(x)</span>=<span>1<span>b-a</span></span><span>∫ab</span>f<span>(x)</span>dx</span></span>.<span><span>A<span>(x)</span>=<span>1<span>b−a</span></span><span>∫<span>ba</span></span>f<span>(x)</span>dx</span><span>A<span>(x)</span>=<span>1<span>b-a</span></span><span>∫ab</span>f<span>(x)</span>dx</span></span>Substitute the actual values into the formula for the average value of a function.<span><span>A<span>(x)</span>=<span>1<span>3−0</span></span><span>(<span>∫<span>30</span></span>8x−6dx)</span></span><span>A<span>(x)</span>=<span>1<span>3-0</span></span><span>(<span>∫03</span>8x-6dx)</span></span></span>Since integration is linear, the integral of <span><span>8x−6</span><span>8x-6</span></span> with respect to <span>xx</span> is <span><span><span>∫<span>30</span></span>8xdx+<span>∫<span>30</span></span>−6dx</span><span><span>∫03</span>8xdx+<span>∫03</span>-6dx</span></span>.<span><span>A<span>(x)</span>=<span>1<span>3−0</span></span><span>(<span>∫<span>30</span></span>8xdx+<span>∫<span>30</span></span>−6dx)</span></span><span>A<span>(x)</span>=<span>1<span>3-0</span></span><span>(<span>∫03</span>8xdx+<span>∫03</span>-6dx)</span></span></span>Since <span>88</span> is constant with respect to <span>xx</span>, the integral of <span><span>8x</span><span>8x</span></span> with respect to <span>xx</span> is <span><span>8<span>∫<span>30</span></span>xdx</span><span>8<span>∫03</span>xdx</span></span>.<span><span>A<span>(x)</span>=<span>1<span>3−0</span></span><span>(8<span>∫<span>30</span></span>xdx+<span>∫<span>30</span></span>−6dx)</span></span><span>A<span>(x)</span>=<span>1<span>3-0</span></span><span>(8<span>∫03</span>xdx+<span>∫03</span>-6dx)</span></span></span>By the Power Rule, the integral of <span>xx</span> with respect to <span>xx</span> is <span><span><span>12</span><span>x2</span></span><span><span>12</span><span>x2</span></span></span>.<span>A<span>(x)</span>=<span>1<span>3−0</span></span><span>(8<span>(<span><span>12</span><span>x2</span><span>]<span>30</span></span></span>)</span>+<span>∫<span>30</span></span>−6dx<span>)</span></span></span>