Answer:
a) Upwards
b) x = -1
c) (-1,-9)
d) x intercepts; (2,0) and (-4,0)
y intercept is (0,-8)
Step-by-step explanation:
a) As we can see, the parabola faces upwards
b) To find the axis of symmetry equation, we look at the plot of the graph and see the point through the vertex of the parabola that exactly divides the parabola into two equal parts
The x-value that the line passes through here is the point x = -1 and that is the equation of the axis of symmetry
c) The vertex represents the lowest point of the circle here,
As we can see, this is the point through which the axis of symmetry passes through to make a symmetrical division of the parabola
We have the coordinates of this point as
(-1,-9)
d) The intercepts
The x-intercept are the two points in which the parabola crosses the x-axis
We have this point as 2 and -4
The x-intercepts are at the points (2,0) and (-4,0)
For the y-intercept; it is the y-coordinate of the point at which the parabola crosses the y-axis and this is the point (0,-8)
Answer:
x= -3/5
Step-by-step explanation:
4x-2y=14
y=12x-1
4x-2(12x-1)=14
4x-24x+2=14
4x-24x=12
-20x=12
×= -12/20
x= -3/5
Answer:
c) Is not a property (hence (d) is not either)
Step-by-step explanation:
Remember that the chi square distribution with k degrees of freedom has this formula

Where N₁ , N₂m ....
are independent random variables with standard normal distribution. Since it is a sum of squares, then the chi square distribution cant take negative values, thus (c) is not true as property. Therefore, (d) cant be true either.
Since the chi square is a sum of squares of a symmetrical random variable, it is skewed to the right (values with big absolute value, either positive or negative, will represent a big weight for the graph that is not compensated with values near 0). This shows that (a) is true
The more degrees of freedom the chi square has, the less skewed to the right it is, up to the point of being almost symmetrical for high values of k. In fact, the Central Limit Theorem states that a chi sqare with n degrees of freedom, with n big, will have a distribution approximate to a Normal distribution, therefore, it is not very skewed for high values of n. As a conclusion, the shape of the distribution changes when the degrees of freedom increase, because the distribution is more symmetrical the higher the degrees of freedom are. Thus, (b) is true.
Answer:
blue and green because parallel means two lines that will never cross