Answer:
The correct answer is option a.
Explanation:
Yes, the light reactions also depend upon the Calvin cycle. Calvin cycle refers to a phenomenon that is used by the plants and algae to convert carbon dioxide from the atmosphere into sugar, the food needed by the autotrophs in order to grow. The plants rely upon the Calvin cycle for food and energy.
In the given case, the rate of oxygen production would get diminish as the rate of ATP and NADP+ generated by the Calvin cycle diminishes. Of all the outcomes of the Calvin cycle, ADP and NADP+ are the only ones that get utilized by light reactions.
The ADP and NADP+ are used up by the light reactions to fuel their reactions. This illustrates that if the rate of ADP and NADP+ generated by the Calvin cycle diminishes the production of oxygen by the light reactions also diminishes.
A scientist focusing on the evolutionary history of specific significant traits is engaged in cladistics.
Cladistics is a method of biological classification in which organisms (plants and animals) are grouped based upon shared significant derived characteristics (synapomorphies). Cladistics identifies various significant shared traits that can be traced to the most recent common ancestor of a group of species and that are not found in more distant groups and ancestors. Cladistics uses various anatomical, molecular and genetic characteristics of organisms.
Answer:
1. P120 is degraded in the 26S proteasome
2. The 26S proteasome has a major role in protein degradation and is critical for protein homeostasis
3. Cell cycle and DNA replication are cellular processes regulated by the Ras and NFkB pathways
Explanation:
The proliferation-associated nucleolar protein (p120) is a protein known to be expressed during the interphase of the cell cycle, specifically in G1 and early S phase, where any problem with DNA replication trigger a checkpoint, i.e., a molecular cascade of signaling events that suspend DNA replication until the problem is resolved. In mammalian cells, the 26S proteasome is responsible for catalyzing protein degradation of about 80% (or even more) of their proteins. The 26S proteasome acts to degrade rapidly misfolded and regulatory proteins involved in the cell cycle, thereby having a major role in protein homeostasis and in the control of cellular processes. It is for that reason that inhibitors that block 26S proteasome function have shown to be useful as therapeutic agents in diseases associated with the failure of protein degradation mechanisms (e.g., multiple myeloma). The NF-κB are highly conserved transcription factors capable of regulating different cellular processes including, among others, cellular growth, inflammatory responses and apoptosis. Moreover, the MAPK/ERK pathway is able to transduce different signals received on the cell surface to the nucleus. The MAPK/ERK pathway is activated when a singling molecule binds to a cell receptor which triggers a signaling cascade that ends when a transcription factor induces the expression of target genes, ultimately producing a response in the cell (for example, the progression through the cell cycle).
The sun, diamond mines, the air we breathe, labs, steel factories.