1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miv72 [106K]
3 years ago
11

Erin had 6 pens Justin gave her some more now she has 9 pens how many did Justin give her​

Mathematics
2 answers:
Katyanochek1 [597]3 years ago
8 0

Answer:

3

Step-by-step explanation:

Slav-nsk [51]3 years ago
8 0

Answer:

Justin gave her 3 pens

Step-by-step explanation:

we know that 9-6=3

You might be interested in
Help me find the missing length pleaseeee
Alja [10]

35 / 5 = 7 ; also 49 /7  = 7

So

? = 8 x 7 = 56

Answer

Missing side length = 56

7 0
4 years ago
I’m pretty sure the answer is a ?
irina [24]
I believe that it’s B
7 0
3 years ago
Please help!!!
Pie

Average speed = \frac{Total Distance}{Total Time}

Ishan's Speed uphill = 10mph

Time taken = 18 minutes = 18/60 = 3/10 hours

Now distance = rate × time

Distance traveled by Ishaan up hill = 10 × 3/10 = 3 miles

Now returning back home

Distance = 3 miles

Rate = 30 mph

So time taken = distance/ rate = 3/30= 1/10 hours = 1/10 ×60 = 6 minutes.

Now total distance traveled = 3 + 3 = 6 miles

Total time taken = 18 + 6 = 24 minutes = 24/60 = 2/5 hours

Average speed

= \frac{6}{0.4}

= 15 mph

Ishaan's average speed for the entire trip from home to the gift store and back is 15mph

5 0
4 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
Solve this problem 6.3=0.9y
Anni [7]
6.3 = 0.9y 


y would equal 7
7 0
3 years ago
Read 2 more answers
Other questions:
  • The table shows the steps for solving the given inequality for x.
    5·1 answer
  • The temperature decreases 3° every hour. c = temperature change Which equation accurately shows a decrease over 5 hours?
    5·1 answer
  • In a museum, the ratio of adults to children is 4 to 14. if there are 360 people in the museum, how many children are there?
    13·2 answers
  • Number 1 to 20 are placed in a bag without replacing the first number what is the probability that the first number drawn will b
    6·1 answer
  • Please Help!
    12·2 answers
  • What was the resulting equation ?
    10·1 answer
  • Solve (−3) ⋅ 2<br><br> please help
    6·2 answers
  • Consider the system of equations shown below. y = negative 5 x + 1. y = negative 5 x + 10 When graphed, the system consists of t
    14·2 answers
  • The prism shown has a volume of 35 cm.
    5·1 answer
  • Can someone please help me on this question and show the work if you can?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!