The answer is Y=-27 hope it helps
The distance (d) between two points (x1,y1) and (x2,y2) is given by the formula
d = √ ((X2-X1)2+(Y2-Y1)2)
d = √ (-400--800)2+(300-200)2
d = √ ((400)2+(100)2)
d = √ (160000+10000)
d = √ 170000
The distance between the points is 412.310562561766
The midpoint of two points is given by the formula
Midpoint= ((X1+X2)/2,(Y1+Y2)/2)
Find the x value of the midpoint
Xm=(X1+X2)/2
Xm=(-800+-400)/2=-600
Find the Y value of the midpoint
Ym=(Y1+Y2)/2
Ym=(200+300)/2=250
The midpoint is: (-600,250)
Graphing the two points, midpoint and distance
P1 (-800,200)
P2 (-400,300)
Midpoint (-600,250)
The length of the black line is the distance between the points (412.310562561766)
Usando el teorema de altura El teorema de altura relaciona la altura (h) de un triángulo rectángulo (ver figura) y los catetos de dos triángulos que son semejantes al anterior ABC, al trazar la altura (h) sobre la hipotenusa. De manera que e<span>n todo </span>triángulo rectángulo, la altura (h<span>) relativa a la </span>hipotenusa<span> es la </span>media geométrica<span> de las dos proyecciones de los </span>catetos<span> sobre la </span>hipotenusa<span> (</span>n<span> y </span>m<span>). Es decir, se cumple que:
</span>

Dado que el problema establece <span>construir un segmento cuya longitud sea media proporcional entre dos segmentos de 4 y 9 cm, entonces, digamos que n = 4cm y m = 9cm tenmos que:
</span>

De donde:
¿Cómo se podria construir si los segmentos son de a cm y b cm?
Si los segmentos son de a y b cm entonces a y b son parámetros que pueden tomar cualquier valor positivo siempre que se cumpla que:

I have attached the graph. I did this using desmos.com. Try it out sometime. I hope that helps.