Answer:
Explanation:
1. The fur in both parents is Black, they both have dominant traits
2. Phenotype in box 3 would be Black.
3. Genotype ratio is 1:3
Answer:
A
Explanation:
Mechanical = physical basically aka his arms throwing the basketball
The plant belongs to the group Angiosperm. Vascular plants with seeds could be cycads, Gingko, conifers, or angiosperms. Among those groups, only angiosperms have flowers.
The plant they found have colored, scented flowers which suggests that it could be pollinated by insects or birds. Colored flowers attract birds and insects. Color serves as a guiding mark. Talking of scent, it does not attract bird, but attracts insects. It also serves as the guiding mark.
Answer:
The effect of amanitin on the maximum elongation rate for the wild-type and modified RNA polymerases is that it binds to the RNA polymerases, and reduces the process of translocation which is essential for RNA synthesis that is required for RNA polymerases elongation.
Explanation:
Amanitin is a peptide that is cyclic in nature. It is repelled by water thereby making it an hydrophobic peptide.
Amanitin is a toxic peptide that is found in Amanita ( a type of mushroom).
Alpha Amanitin in particular is the one that affects the elongation rate of RNA Polymerases in the body.
When Alpha Amanitin gets into the body system, it travels straight to the liver and due to its very strong affinity for RNA polymerases, it immediately attaches itself to them.
After the attachment, Alpha Amanitin, is disturbs the bridge helix found in RNA polymerase, preventing the hindering and slowing down the proces of translocation from happening.
Once translocation is hindered, RNA is no longer synthesized. Hence, the elongation of RNA polymerases is hindered and this results in severe illness in the body such as liver failure, cytolysis of the liver
Answer
The three metabolic pathways that make up aerobic respiration are really all parts of one larger pathway because the products of early pathways (like NADH) become <u>utilize</u> in the last one.
Explanation
Aerobic respiration is that type of respiration in which glucose molecule is broken down into CO2 and H2O in the presence of oxygen and 36 or 38 ATP molecules are produced.
Aerobic respiration complete in four main steps:
1. Glycolysis
In this step glucose is broken down into 2 molecules of pyruvate acid along with the production of 2 ATP molecules and 2NADH.
2. Oxidation of pyruvate
In this step pyruvate are oxidized in the presence of co-enzyme A to become Acetyl Co-enzyme A. Again 2NADH are formed in this step.
3. Kreb Cycle
It occus in mitochondria. Here acetyle coenzyme A enter Carbon fixation, reduction and regeneration phase. In this cycle 6 NADH, 2FADH2 and 2ATP are formed.
4. Electron transport chain
All NADH that are produced in above steps get oxidize and help in the production of ATP along with the release of electron and proton that help in the formation of water.