Given that the radius of the circle is 6 cm.
The central angle is 120°
We need to determine the length of AB.
<u>Length of AB:</u>
The length of AB can be determined using the formula,
![{arc \ length}=2 \pi r\left(\frac{\theta}{360}\right)](https://tex.z-dn.net/?f=%7Barc%20%5C%20length%7D%3D2%20%5Cpi%20r%5Cleft%28%5Cfrac%7B%5Ctheta%7D%7B360%7D%5Cright%29)
Substituting
and
in the above formula, we get;
![arc\ length}=2 \pi (6)\left(\frac{120}{360}\right)](https://tex.z-dn.net/?f=arc%5C%20length%7D%3D2%20%5Cpi%20%286%29%5Cleft%28%5Cfrac%7B120%7D%7B360%7D%5Cright%29)
Simplifying the values, we get;
![arc\ length}=2 \pi (6)\left(\frac{1}{3}\right)](https://tex.z-dn.net/?f=arc%5C%20length%7D%3D2%20%5Cpi%20%286%29%5Cleft%28%5Cfrac%7B1%7D%7B3%7D%5Cright%29)
![arc\ length}=12 \pi \left(\frac{1}{3}\right)](https://tex.z-dn.net/?f=arc%5C%20length%7D%3D12%20%5Cpi%20%5Cleft%28%5Cfrac%7B1%7D%7B3%7D%5Cright%29)
![arc\ length}=4 \pi](https://tex.z-dn.net/?f=arc%5C%20length%7D%3D4%20%5Cpi)
Substituting π = 3.14, we have;
![arc\ length}=4(3.14)](https://tex.z-dn.net/?f=arc%5C%20length%7D%3D4%283.14%29)
![arc\ length}=12.56](https://tex.z-dn.net/?f=arc%5C%20length%7D%3D12.56)
Thus, the arc length of AB is 12.56 cm