Well let's remember csc = hypotenuse/opposite
Let's use the distance formula to find the length of the hypotenuse.
<span><span><span><span>√(0−−8)^</span>2</span>+<span><span>(−6−0)^</span>2
</span></span>√</span><span><span><span><span>(0+8)^</span>2</span>+<span><span>(−6+0)^</span>2
</span></span>√</span><span><span><span><span>(8)^</span>2</span>+<span><span>(−6)^</span>2
</span></span>√</span><span><span>64+36
</span>√</span><span>100
H = 10
so csc = 10/opposite
Now to find the opposite length using distance formula
</span>√(0−−8)^2+(0−0)^2
√(0+8)^2+(0+0)^2
√(8)^2+(0)^2
√64+0
√64
O = 8
So csc = 10/8 or 1.25
Answer: second option.
Step-by-step explanation:
Given the transformation
→
You must substitute the x-coordinate of the point A (which is
) and the y-coordinate of the point A (which is
) into
to find the x-coordinate and the y-coordinate of the image of the point A.
Therefore, you get that the image of A(2,-1) is the following:
You can observe that this matches with the second option.
Answer:
El área del foso es 5.5 m²
Step-by-step explanation:
Hola!
Por favor, mira el esquema adjunto para una descripción del problema.
Viendo la figura, podemos deducir que el área del foso será igual al área del rectángulo formado por el jardín y el foso menos el área del jardín.
Área del foso = área del foso y jardín - área del jardín.
El área de un rectángulo se calcula multiplicando la longitud de la base por la altura:
Área del jardín = 2.5 m · 2 m = 5 m²
Área del rectángulo jardín - foso = 3.5 m · 3 m = 10.5 m²
Área del foso = 10.5 m² - 5 m² = 5.5 m²
El área del foso es 5.5 m²
It can be written in a scientific notation.
670,000,000 + 700,000,000
6.7 E^8 + 7 E^8
13.7 E^8
1.37 E^9
The answer is 2/5. (Do not brainliest)