Is that the full question
Use the distributive property
10-6-4x=0
4-4x=0
Answer:
Point A(9, 3)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
<u>Algebra I</u>
- Coordinates (x, y)
- Functions
- Function Notation
- Terms/Coefficients
- Anything to the 0th power is 1
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- [Function] Rewrite [Exponential Rule - Root Rewrite]:

- Basic Power Rule:

- Simplify:

- [Derivative] Rewrite [Exponential Rule - Rewrite]:

- [Derivative] Rewrite [Exponential Rule - Root Rewrite]:

<u>Step 3: Solve</u>
<em>Find coordinates of A.</em>
<em />
<em>x-coordinate</em>
- Substitute in <em>y'</em> [Derivative]:

- [Multiplication Property of Equality] Multiply 2 on both sides:

- [Multiplication Property of Equality] Cross-multiply:

- [Equality Property] Square both sides:

<em>y-coordinate</em>
- Substitute in <em>x</em> [Function]:

- [√Radical] Evaluate:

∴ Coordinates of A is (9, 3).
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e
Answer:
vertex at (1, -3)
Step-by-step explanation:
When x = 0
y² + 6y + 1 = 0
y² + 6y + = -1
y² + 6y + 9 = -1 + 9
(y + 3)² = 8 or (-y - 3)² = 8
y + 3 = √8 or -y - 3 = √8
y = - 3 +√8 or y = -3 - √8
(0, - 3 +√8) and (0, -3 - √8)
The mid point between these two is the average
y = ( - 3 + √8 + -3 - √8) / 2 = - 3
y² + 6y + 8x + 1 = 0
(-3)² + 6(-3) + 8x + 1 = 0
9 - 18 + 1 = -8x
- 8 = -8x
x = 1