F(x)=(-2/((x+y-2)^(1/2))-(x+y+2)^(1/2)
the only irrational part of this expression is the (x+y-2)^(1/2) in the denominator, so, to rationalize this, you multiply the numerator and denominator by the denominator, as well as the other parts of the expression
also, you must multiply the -sqrt(x+y+2) by sqrt(x+y-2)/sqrt(x+y-2) to form a common denominator
(-2)/(x+y-2)^(1/2)-(x+y+2)^(1/2)(x+y-2)^(1/2)/(x+y-2)^(1/2)
(common denominator)
(-2-(x^2+xy+2x+xy+y^2+2y-2x-2y-4))/(x+y-2)^(1/2)
(FOIL)
(-2-x^2-y^2-2xy+4)/(x+y-2)^(1/2)
(Distribute negative)
(-x^2-y^2-2xy+2)/(x+y-2)^(1/2)
(Simplify numerator)
(-x^2-y^2-2xy+2)(x+y-2)^(1/2)/(x+y-2)^(1/2)(x+y-2)^(1/2)
(Rationalize denominator by multiplying both top and bottom by sqrt)
(-x^2-y^2-2xy+2)((x+y-2)^(1/2))/(x+y-2)
(The function is now rational)
=(-x^2-y^2-2xy+2)(sqrt(x+y-2))/(x+y-2)
For 4 you just need to multiply the 7 and 33 together and add 32. Then put your awnser over 33. (if it is asking for the fraction)
Answer:
approximation is often useful when it is not a very good one
Answer:
43
Step-by-step explanation:
Given
2(p - q) + 5(p + q) ← substitute p = 7 and q = - 2 into the expression
= 2(7 - (- 2)) + 5(7 + (- 2))
= 2(7 + 2) + 5(7 - 2)
= 2(9) + 5(5)
= 18 + 25
= 43
Positive numbers is the last one