The answer is B: 11.
To solve it, you need to solve the equation: 20.00=12.85+0.65x
Answer:
The distribution of sample proportion Americans who can order a meal in a foreign language is,

Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes <em>n</em> > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:

The standard deviation of this sampling distribution of sample proportion is:

The sample size of Americans selected to disclose whether they can order a meal in a foreign language is, <em>n</em> = 200.
The sample selected is quite large.
The Central limit theorem can be applied to approximate the distribution of sample proportion.
The distribution of sample proportion is,

It can sometimes be rational
Answer:
a) ![A=\left[\begin{array}{ccc}1&2&3\\1&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C1%26-1%261%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}0\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
b) 
c) ![A=\left[\begin{array}{ccc}0&6\sqrt{2} &0\\\sqrt{3} &3\sqrt{3} &0\\2&-16&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%5Csqrt%7B2%7D%20%260%5C%5C%5Csqrt%7B3%7D%20%263%5Csqrt%7B3%7D%20%260%5C%5C2%26-16%260%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-\sqrt{2} \\\sqrt{3} \\6\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Csqrt%7B2%7D%20%5C%5C%5Csqrt%7B3%7D%20%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
a) considering the equation:
Minimize 
(matrix A)
vector b
![b=\left[\begin{array}{ccc}0\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
b) If Pxn is matrix B and p-vector d, we have:
minimize 
![Ax=\left[\begin{array}{ccc}0&-6&0\\-4&3&0\\1&8&0\end{array}\right]](https://tex.z-dn.net/?f=Ax%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-6%260%5C%5C-4%263%260%5C%5C1%268%260%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-4\\1\\3\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%5C%5C1%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
![Ax-b=\left[\begin{array}{ccc}-bx_{2}+4 \\-4x_{1}+3x_{2}-1 \\x_{1}+8x_{2}-3 \end{array}\right] =1](https://tex.z-dn.net/?f=Ax-b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-bx_%7B2%7D%2B4%20%5C%5C-4x_%7B1%7D%2B3x_%7B2%7D-1%20%20%5C%5Cx_%7B1%7D%2B8x_%7B2%7D-3%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D1)

c) minimize 
in matrix:
![A=\left[\begin{array}{ccc}0&6\sqrt{2} &0\\\sqrt{3} &3\sqrt{3} &0\\2&-16&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%5Csqrt%7B2%7D%20%260%5C%5C%5Csqrt%7B3%7D%20%263%5Csqrt%7B3%7D%20%260%5C%5C2%26-16%260%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-\sqrt{2} \\\sqrt{3} \\6\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Csqrt%7B2%7D%20%5C%5C%5Csqrt%7B3%7D%20%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
The answer i came up with is : (4b-7x) (a+2)